PAVEMENT FORM 4 TRIAL 2 EXAMINATION 2021/2022 Kenya Certificate of Secondary Education (K.C.S.E)

121/2 MATHEMATICS PAPER 2 MARKING SCHEME

No.	Marking scheme	Marks	Comments
1.	$\left(x - \frac{4}{3}\right)\left(x - \frac{1}{2}\right) = 0$	M1	
	$x^2 - \frac{5}{6}x - \frac{2}{3} = 0$	M1	
	$6x^2 5x 4 = 0$	A1	
		3	
2.			Alternative method
	Actual volume = $(8 \times 4.20 \times 5.6) = 188.16 \text{ cm}^3$ Maximum volume = $(8.5 \times 4.205 \times 5.65) = 201.945125 \text{ cm}^3$	M1	$\left(\frac{0.5}{8} - \frac{0.005}{4.20} + \frac{0.005}{5.6}\right) \times 100\%$
	Maximum volume = $\{7.5 \times 4.195 \times 5.55\}$ = 174.616875 cm ³		7.261906%
	Absolute error = $\frac{201 \cdot 945125 - 174 \cdot 616875}{2}$	A1	
	$\frac{13.664125}{\text{Percentage error} = \left(\frac{13.664125}{188.16}\right) \times 100\%$		
	— 7·262%		
		2	
3.	(a) $Sh.(25\ 000 - 3730) = Sh.\ 21\ 250$		
	Carrying charge = $\left(21250 \times \frac{40}{100} \times 2\right)$	M1	
	= Sh. 17 000	A1	
	(b) $\left(\frac{21250 \pm 17000}{24}\right)$ = Sh. 1 593.75	B1	
		3	

4.	$3\log_4(\sqrt{3}) = \frac{1}{2}\log_4 3 + 3\log_4 2 - \log_4 6$		
	$= \log_4 \left[\frac{\frac{3^2}{3^2}}{\frac{3^2}{3^2}} \times \frac{2^2}{6} \right]$	M1	
	$=\log_4 2^3$		
	Let $m = \log_4 2^3 \Rightarrow 2^{2m} = 2^3$	M1	
	2m - 3		
	$\lim_{n \to \infty} \frac{1}{2} \log_4 2^3 = 1\frac{1}{2}$	A1	
		03	
5.	$2^{-3n^2} \left(a + x \right)^{-n} = 20^{-3n^2}$		
	$(a+x)^{-n} = (10^{nn})^{-n}$	M1	
	$a - x = 10^{30}$		
	$\log(a+x) = 3n\log 10$	M1	
	$n = \frac{1}{3} \log(a + x)$	A1	
		3	
6.	The required angle is BDE		
	Now/EBC – 90° angles in a semicircle in triangle EBC	B1	
	$\angle BEC = 27^{\circ}$, hence; $\angle ECP = 20^{\circ} - 37^{\circ} - 62^{\circ} (\text{analas in a triangle})$	B1	For 90°
	$2100 \text{ B} = 90^{\circ} - 27 = 65^{\circ} \text{(angles in a triangle)}$ $D_{\text{D}} = 27 \text{ BDE} = 27 \text{ BCE}$, angles in the same segment.		
	But manner		
	Hence $\angle BDE = 63^{\circ}$	B1	

		3	
7.	$\frac{1}{x} - \frac{1}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} - \frac{2 - \sqrt{3}}{1} - 2 - \sqrt{3}$	M1	
	$x - \frac{1}{x} - (2 - \sqrt{3}) - (2 + \sqrt{3}) = -2\sqrt{3}$	M1	
	$\left(x - \frac{1}{x}\right)^{2} = \left(-2\sqrt{3}\right)^{3}$		
	$=(-2)^{3}(\sqrt{3})^{2}$		
	$= 24\sqrt{3}$	A1 3	
8.	/ states and a set and a set of		
	$\frac{(x-y)}{(1\cdot58)^4} = \frac{x^2 + 4x(-y) - 6x^2 - y^2 + 4x(-y)^2 + (-y)^2}{(1\cdot58)^4}$	MI	
	$2^{4} - 4(2)^{2}(0.42) + 6(2)^{2} - 4(2)(0.42)^{3} - (0.42)^{7}$	M1	
	= 16 - 13.44 - 4.2336 - 0.592704 + 0.013069123 = 6.213965123		
	<i>≃</i> 6.214	A1	
9.			
	$BF = \sqrt{4^2 + 2^2}$	M1	
	$-2\sqrt{5}$		
	$DE = \sqrt{5^2 + 2^2}$	M1	
	$=\sqrt{29}$		
	$\cos\beta = \frac{41 + 20 - 29}{2 \times \sqrt{41} \times \sqrt{20}}$	M1	
	$= 56.0^{\circ}$	A1	
1			l l

		4	
10.	$y = 2\cos(2x + 90^n)$		
	Amplitude = 2	B1	
	Phase shift = $\frac{180^{\circ}}{4} = 45^{\circ} (\text{left of } 45^{\circ})$	D 1	
	4	BI	
11.	48	L	
	$Q_1 = \frac{46}{4} = 12^{47}$ item = 11,000		
	$Q_3 = \frac{3}{4} \times 48 = 36^{10}$ item	M1	
	= 13,000		
	13,000 - 11,000	M1	
	Q.D = 2	A 1	
	- 1,000	AI	
		3	
12.	Latitude difference = $51^\circ + 37^\circ = 88^\circ$	B1	
	00 m		
	Distance in kilometres; $\frac{66}{360} \times \frac{22}{7} \times 2 \times 6370$	M1	
	– 9787.6 km		
	- <i>9707.</i> 0 Km	A1	
		3	

13.	(a)		
	Side of QRST = $\sqrt{(1-1)^2 + (3-1)^2}$	M1	Or equivalent
	= 2	Δ 1	
	$\therefore \text{Area} = 2 \times 2 = 4$ (b) the area of image $Q'R'S'T'$	AI	
	$= \det \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix} \times 4$	M1	
	$=6 \times 4$		
	=24sg		
		A1	
14.	$AB = 6.5 \tan 70^{\circ}$	M1	6.5
	= 17.86 cm		$OB = \frac{19.00 \text{ cm}}{\cos 70^{\circ}}$ 19.00 cm
	Area of quadrilateral OABC=2 $\left(\frac{1}{2} \times 6.5^2 \tan 70^n\right)$	M1	$2\left(\frac{1}{2} \times 17.86 \times 6.5\right) = 116.09 \text{ cm}^2$
	$= 116.08 \text{ cm}^2$		
	Area of sector OAC = $\frac{140}{360} \times 3.142 \times 6.5^2$	M1	
	$= 51.62 \text{ cm}^2$		
	Shaded area = $116.08 - 51.62$	A 1	
	$= 64.47 \text{ cm}^2$	AI	
		4	
15.	C fraction in 1 minute $=\frac{1}{20}-\frac{1}{40}=\frac{1}{120}$	B1	
	C takes 120 minutes		
	B fraction in 1 minute $\frac{1}{30} - \frac{1}{45} = \frac{1}{90}$		
	B takes 90 minutes	B1	
	A fraction in 1 minute $=\frac{1}{30} - \frac{1}{90} - \frac{5}{360}$	DI	
	$\frac{360}{4} = \frac{360}{72} = 72$ minutan	B1	
	A takes $=$ $\frac{1}{5}$ $=$ $\frac{1}{2}$ onnules		
		3	
16.		_	

PAVEMENT PUBLISHERS 2021/2022

(c) Average rate of change;			
$-\frac{3}{3.1-1.2}$		M1	
= 7.37		A1	
(d) Tangent at $x = -0.5$			
Gradient $=$ $\frac{6 30}{1.5 0.8}$		B1	
-1.5-0.8		M1	
= 15.7		A1	
MENT PUBLISHERS 2021/2022	For free KCSE Notes, Exams. and P	ast Papers Visit http	s://Teacher.co.ke/notes/

		10	
18.		10	
	(a) (i) $\frac{a-4d}{a-11d} = \frac{6}{13} \Rightarrow a = 2d(i)$ $a(a+2d) = 32(ii)$	M1	
	2d(2d+2d)=32	M1	
	$8d^{2} = 32$ $d^{2} - 4$ $d - 12$ $d - 2$ $q - 2d$ -2×2	M1	Solving for <i>d</i>
	- 4	A1	Solving for <i>a</i>
	(ii) $S_{5} = \frac{5}{2} \{2 \times 4 + (5-1)2\}$ = $\frac{5}{2} (8+8)$	M1	
	_ 40	A1	
	(b) $\frac{n}{2} \{ 2 \times 4 - (n-1)2 \} > 700$	M1	Correct substitution
	$\frac{n}{2} \{ 6+2n \} > 700$		
	$2n^{2} + 6n - 1400 > 0$ $n^{2} - 3n - 700 > 0$	M1	
	$n^2 - 28n - 25n - 700 > 0$		
	n(n+28) - 25(n-28) > 0 $(n-25)(n-28) > 0$	M1	Solving quadratic equation
	(n - 25)(n - 26) > 0 $(n - 25) > 0$ $n > 25$ $n = 25 + 1$ $= 26$	A1	<i>n</i> +1

PAVEMENT PUBLISHERS 2021/2022

Teacher.co.ke

Page 10

		1
(c) (i) $-234^{\circ} \pm 1^{\circ}$ and $126^{\circ} \pm 1^{\circ}$		
(ii) values of y	R1	
$y_1 = -0.9$	ות	
$v_2 = 0.9$		
	B1	
EMENT PUBLISHERS 2021/2022		Page 11

		10	
21.	(a) Distance in 1 minute $\frac{144 \times 30}{3600}$ 1.2 km	M1	Alternatively;
	$D_{252 \text{ km}^{-1}} = 1.2 + x = D_{1.01 \text{ km}^{-1}} = x$		Relative speed = $252 - 144$ = 108 km/h
	S = 252 km/h $S = 144 km/h$		$T = \frac{1.2}{1.2} = \frac{1}{1.2}$ hrs
	$T = \frac{1.2 + x}{252} \qquad T = \frac{x}{144}$		10.8 90
	1.7		$D = \frac{1}{90} \times 144$
	$\frac{1.2}{252} = \frac{x}{144}$	M1	
	1.75x - x = 1.2		— 2,8 km
	0.75x = 1.2 x = 1.6 km	A1	
	$D_{253, km/k} = 1.2 - x$		
	-1.2 - 1.6	D1	
	= 2.8 km	BI	
	(b) Remaining distance = $3.22 - 2.8 = 0.42$ km	M1	
	Distance = $144 \times \frac{0.42}{252} = 0.24$ km	M1	
	(0.42 - 0.24) = 0.18 km	A1	
	(c)		
	Distance $2x + x = 3x$ $\mathbf{PS} = (25 \pm 15) = 40 \operatorname{km} 0$	B1	
	(22 + 12) = 40 Kiton		
		M1	

$\frac{3x}{40} = \frac{10.83}{3600}$ $x = \frac{40 \times 10.8}{3 \times 3600}$ = 0.04 km = 40 m Train 1 = 40 m Train 2; 2 × 40 = 80 m	A1	
	10	

PAVEMENT PUBLISHERS 2021/2022

$$P(GRB) \text{ or } P(GLB) - \left(\frac{1}{3} \times \frac{9}{10} \times \frac{1}{10}\right) - \left(\frac{1}{3} \times \frac{1}{10} \times \frac{3}{10}\right)$$

$$= \frac{9}{300} + \frac{1}{100}$$

$$= \frac{1}{25}$$

$$(iv) P(BRB') \text{ or } P(GLB')$$

$$P(BRB') \text{ or } P(GLB') - \left(\frac{2}{3} \times \frac{8}{10} \times \frac{9}{10}\right) + \left(\frac{1}{3} \times \frac{1}{10} \times \frac{3}{10}\right)$$

$$= \frac{144}{300} \times \frac{3}{300}$$

$$M1$$

$$= \frac{3}{625}$$

$$A1$$

24. (a)
(i) OD
$$a + \frac{1}{3}b$$
 B1
(ii) BD = BO + OA + AD
 $-b - a + \frac{1}{3}b$ B1
 $= a - \frac{2}{3}b$ B1
 $= a - \frac{2}{3}b$ B1
(b) OX $-k\left[a + \frac{1}{3}b\right] - ka + \frac{1}{3}kb$ B1
OX = OB + hBE
 $b + h\left[\frac{1}{3}a - b\right] - b(1 - h) - \frac{1}{3}ha$ B1
(c)
(i) $ka + \frac{1}{3}kb - b(1 - h) + \frac{1}{3}ha$ B1
(c)
(i) $ka + \frac{1}{3}kb - b(1 - h) + \frac{1}{3}ha$ B1
 $\frac{1}{3}h - 1 - h > k - 3(1 - h)$ M1
 $\frac{1}{3}h - 3 - 3h$ M1
 $h - \frac{9}{10}$ A1
B0th values of h and k
 $-\frac{3}{10}$
(ii) OX:XD = 3:7 B1

PAVEMENT PUBLISHERS 2021/2022

10

THIS IS THE LAST PRINTED PAGE

