MARKING SCHEME

1. e)

Distance (cm)	10	20	30	40	50	60	70
Force (N)	0.8	1.0	1.2	1.2	1.8	2.0	2.4
± 0.01						1mark for each correct value -max. 7marks	

f)

g) (i) The slope
$(0,0.4) \quad(70,2.4) \quad 1 / 2 \mathrm{mk}$ for each change
$=\underline{2.0}$
70×10^{-2}
$=2.857 \mathrm{~N} / \mathrm{cm} \quad 1 \mathrm{mk}$ for evaluation, with units , 4s.f or exact
Or $2.857 \times 10^{-2} \mathrm{~N} / \mathrm{M}$
ii) When $\mathrm{d}=0$, Force $=0.4 \mathrm{~N}$ i.e the $\mathrm{y}-$ intercept
(1 mk for identify it's a value for y - intercept)
(1 mk for correct reading from the graph)
h) Comparing $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ with $\mathrm{F}=2 \mathrm{md}+40 \mathrm{k}$

Then gradient $=2 \mathrm{~m}$
$2.857=2 \mathrm{~m}$
$\frac{2.857}{2}=\mathrm{m}$
$\mathrm{Y}=$ intercept $=40 \mathrm{k}$
$=\frac{0.4}{40}=\frac{40 \mathrm{k} \sqrt{ } 1}{40}$
$=\frac{0.04}{40}$
$0.01 \mathrm{~N} \sqrt{ } 1$
2.
a)
i) $\quad \mathrm{V}_{1}=3.1 \pm$ Volts
\checkmark (1mk) (at least $1 \mathrm{~d} . \mathrm{p}$)
ii)

$$
\begin{array}{lc}
\mathrm{V}_{2}=2.6 \pm 0.1 \mathrm{~V} & \checkmark(1 \mathrm{mk} \\
\mathrm{I}_{1}=0.12 \pm 0.02 \mathrm{~A} & \checkmark(1 \mathrm{mk})
\end{array}
$$

$$
\checkmark(1 \mathrm{mk}) \text { (at least } 1 \mathrm{~d} . \mathrm{p})
$$

iii) $\quad P=\frac{3.1-2.6}{0.12}$ Substitution $\checkmark(1 \mathrm{mk})$
$=4.167 \Omega(1 \mathrm{mk})$
b)
$\begin{aligned} & \text { i) } \quad \mathrm{V}=2.2 \pm \mathrm{V} 0.1 \\ & \mathrm{I}=0.22 \pm 0.02 \mathrm{~A} \\ & \text { ii) } \quad \quad \mathrm{R}=\frac{2.2}{0.22} \quad=10 \Omega \checkmark\end{aligned}$

1 mk for ohms law/ substitution
1 mk correct evaluation with correct unit
e)

Temp L (cm)	100	80	60	40
Length $1 / 4 /(1 / \mathrm{cm})$	0.01	0.0125	0.01667	0.025
Voltmeter Reading (V)	1.5	1.3	1.1	0.9
$1 / v(1 / \mathrm{v})$	0.6667	0.7692	0.9091	1.111
$Z=\frac{1}{L} / \frac{1}{V} \quad \mathrm{~V} / \mathrm{cm}$	0.01496	0.01625	0.01834	0.02250

Allow both rounding off and truncation

- Correct conversion of $1 / \mathrm{L} \quad \checkmark(1 \mathrm{mk})$
- Voltmeter Reading within range $\checkmark(1 / 2 \mathrm{mk}$ each $)$ to a max of 2 mks
- Correct evaluation of $1 / v \quad \checkmark(1 \mathrm{mk})$
- Correct evaluation of Z \checkmark (1mk)
g) $\mathrm{f}=20.0 \pm 1.0 \mathrm{~cm} \quad 1 \mathrm{mk} 1 \mathrm{~d} . \mathrm{p}$ a must
(j)

$\mathrm{U}(\mathrm{cm})$	40.0	50.0
$\mathrm{~V}(\mathrm{~cm})$	41.0	34.0
Magnification $\mathrm{m}=\mathrm{v} / \mathrm{u}$	1.025	0.68

