<u>232/3/</u> <u>PHYSICS</u> <u>PAPER 3</u>

MARKING SCHEME

1. e)

Distance	10	20	30	40	50	60	70
	10	-•	20			00	, 0
(cm)							
Force (N)	0.8	1.0	1.2	1.2	1.8	2.0	2.4
+0.01			1mark for each correct value -max 7marks				
±0.01			mark for each confect value -max. /marks				

f)

g) (i) The slope

(0, 0.4) (70, 2.4)	¹ / ₂ mk for each change
= <u>2.0</u>	
70 x 10 ⁻²	
= 2.857 N/cm	1mk for evaluation, with units ,4s.f or exact

Or 2.857 x 10⁻² N/M

ii) When d = 0, Force = 0.4N i.e the y – intercept(1mk for identify it's a value for y – intercept)(1mk for correct reading from the graph)

```
h) Comparing y = mx + c with F = 2md + 40k

Then gradient = 2m

2.857 = 2m

\frac{2.857}{2} = m

Y = intercept = 40k

= \frac{0.4}{40} = \frac{40k}{40} \sqrt{1}

= \frac{0.04}{40}

0.01 N\sqrt{1}
```


2. a) i)
$$V_1 = 3.1 \pm \text{Volts}$$
 $\checkmark (1\text{mk}) (\text{at least 1 d.p})$
ii) $V_2 = 2.6 \pm 0.1 \text{V}$ $\checkmark (1\text{mk}) (\text{at least 1 d.p})$
 $I_1 = 0.12 \pm 0.02 \text{A}$ $\checkmark (1\text{mk})$
iii) $P = \frac{3.1 - 2.6}{0.12} \text{Substitution} \checkmark (1\text{mk})$
 $= 4.167 \Omega (1\text{mk})$
b) i) $V = 2.2 \pm V 0.1$ $\checkmark (1\text{mk}) (\text{at least 1 d.p})$
 $I = 0.22 \pm 0.02 \text{A}$ $\checkmark (1\text{mk})$
ii) $R = \frac{2.2}{0.22} = 10 \Omega \checkmark$

1mk for ohms law/ substitution

1mk correct evaluation with correct unit

e)

	100	80	60	40
Temp L (cm)				
	0.01	0.0125	0.01667	0.025
Length ¼ (¹/cm)				
Voltmeter	1.5	1.3	1.1	0.9
Reading (V)				
¹ / _V (¹ / _V)	0.6667	0.7692	0.9091	1.111
$Z = \frac{\frac{1}{L}}{\frac{1}{V}} V/cm$	0.01496	0.01625	0.01834	0.02250

Allow both rounding off and truncation

- Correct conversion of 1/L \checkmark (1mk)
- Voltmeter Reading within range \checkmark (¹/₂mk each) to a max of 2mks
- Correct evaluation of $^{1}/_{V}$ \checkmark (1mk)
- Correct evaluation of Z \checkmark (1mk)

a must

(j)

U (cm)	40.0	50.0
V (cm)	41.0	34.0
Magnification m=v/u	1.025	0.68

