KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2010/2011 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE: CHEM 421

COURSE TITLE: COMPARATIVE STUDY OF d AND f

BLOCK ELEMENTS

- STREAM: Y4 S2
- DAY: MONDAY
- TIME: 2.00 4.00 P.M
- DATE: 29/11/2010

INSTRUCTIONS:

- Attempt ALL questions
- Periodic Table provided

PLEASE TURN OVER

QUESTION ONE (20MARKS)

a)	Define the term transition element?	
		(2marks)
b)	Explain why d-block elements have the ability to form complex compound	ds.
		(2marks)
c)	Explain the origin of the deep colours in oxysalts of transition element.	(2marks)
d)	Explain why the solution formed when a concentrated solution of NH	$_3$ is added to a
	solution containing $Zn(NO_3)_2$ is colourless.	(4marks)
e)	Account for the following observations using valence bond theory: [Cu(N	$(H_3)_4]^{2+}$ is
	paramagnetic while $[Co(NH_3)_6]^{3+}$ diamagnetic [Atomic numbers; Co =27,	and Cu =29]
		(4marks)
f)	Define and give an explanation for Lanthanide contraction.	(4marks)

QUEATION TWO (20MARKS)

a)	Outline any two general properties of d-block elements?			
b)	State	e any two similarities between the d and f-block elements.	(4marks)	
c)	c) Explain the following observations.			
	i.	The sizes of lanthanides decrease as one moves across the period.	(2marks)	
	ii.	The ionic radius of Fe^{3+} is 0.64A while that of Fe^{2+} is 0.76A	(2marks)	
	iii.	Transition metals have very high boiling and melting points.	(2marks)	
	iv.	d-block elements have a marked ability to form alloy compounds.	(2marks)	
	v.	d-block elements have a marked ability to form interstitial compour	nds.(2marks)	
	vi.	The covalent character of the M^{3+} ions of the lanthanides increases	across the	
		period.	(2marks)	

QUESTION THREE (15MARKS)

- a) Explain, what are metal carbonyls? (2marks) b) Outline the hybridization in the formation of Ni(CO)₄ molecule. (8marks)
- c) Outline the mechanism involved in the following reaction. (5marks)

QUESTION FOUR (15MARKS)

a) Explain ,using any two equations how organometallic compounds are formed

(4marks)

- b) Explain how vibration frequency and bond length of a C=C is affected when it bonds to a metal centre? (3marks)
- c) With reference to the 18-electron rule, comment on the stability of the following complexes: (8marks)
 - i. Ni (CO)₄
 - ii. Fe(CO)₅
 - $_{iii.}$ Mn (CO)₅
 - $_{iv.}\ Mn_2(CO)_{10}$