10.0 PHYSICS (232)

10.1 Physics Paper 1 (232/1)

SECTION A

- 1. Stable
 Line through the centre of gravity is within the base the base of the lorry; 1
- 2. Upthrust;
- 3. F = Ke; 1 = 125 x 0.2; 1 = 25N; 1
- 4. Cooling; 1
 Aluminium contracts more than steel for the same temperature change; 1
- 5. P;
 Cool layers from top descend and are replaced by hotter layers, convection starts from top;
- 6. Terminal velocity = 80 m/s;
- 7. Surface tension at X is reduced; 1
 Higher surface tension at Y pulls the boat; 1
- 8. Speed of molecules increases; 1
 Molecules hit walls more frequently with greater momentum. 1
- 9. Velocity at constriction is higher; 1
 Pressure drops, atmospheric pressure pushes petrol to the constriction. 1
- 10. Smaller intermolecular forces in liquids than solids.
- 11. Reaction

- 12. $20 \times 2.5 = F \times 10;$ $F = \frac{20 \times 2.5}{10}$

14.	ideni	ncai jets	;	1
	Press	sure is tr	ransmitted equally throughout the liquid.	1
			SECTION B	
15.	(a)	(i) (ii)	Arrow tangent at C; Potential energy.	1 1
	(b)	(i)	Mgh = $\frac{1}{2}$ mv ² ; v = $\sqrt{2 \times 10 \times 0.1}$; = 1.41 ms ⁻¹ ;	1 1 1
		(ii)	Tension = $\frac{\text{mv}^2}{\text{r}} + \text{mg}$ = $\frac{0.05}{0.8} \times 2 + 0.05 \times 10$; = 0.625 N;	1 1 1
	(c)		to do work against air resistance; erted to heat energy.	1
16.	(a)	(i) (ii) (iii)	tangent at X; 2 m/s; obeys Newton's first law of motion.	1 1 1
	(b)	N > F m doe F = K	es not act on the trailer;	1 1
	(c)	(i)	I. $F = 25 \text{ Nm}^{-1} \times 0.03 \text{ m}$; = 0.75 N.	1 1
		(ii)	II. $F = ma$; $0.75 = 2 \times a$; $a = 0.375 \text{ m/s}^2$; Force in spring decreases as spring recovers original length; No force on the trolley after contact with wall is lost.	1 1 1 1
17.	(a)	(i) (ii)	Water vapour; Vapour pressure at boiling point equals or exceeds prevailing external pressure.	1
	(b)	(i)	Prevailing atmospheric pressure $P = 9gh.;$ = 13600 x 10 x 0.618;	1
		(ii)	= $84.0 \times 10^3 \text{ Nm}^{-2}$; Reading of boiling point pressure at pressure $P = 84 \times 10^3$ is $95 \pm 1^{\circ}C$;	1

(c)	(1)	Heat gained by water + neat gained by	4
8 9		calorimeter = $0.08 \times 4200 \times 7.7$; + $0.05 \times 400 \times 7.7$;	2
		= 2741.2J;	1
			6 3
		(ii) Heat lost by metal = heat gained by water and calorimeter	1
		$0.1 \times 71.3 \times C = 2741.2;$	1
		$C = \frac{2741.2}{7.13}$	1
			1
		= 384.46	
		$\simeq 384 \text{ J Kg}^{-1} \text{ k}^{-1};$	1
		(iii) • metal cooling in the process of transferring;	1
		 Metal carrying some hot water into the cold water (any 1 	correct)
18.	(a)	Measure length of threaded part;	1
	()	Divide the length by number of threads;	1
		Divide the length of humber of through,	~
	(h)	Distance moved by affort - 27 ram	
	(b)	Distance moved by effort = $2\pi r \text{ cm}$	1
		$=50\pi \mathrm{cm};$	1
		Distance moved by load $= 0.1 \text{ cm}$.	
		$Velocity ratio = \frac{Effort distance}{Load distance};$	an
			1
		$=\frac{50\pi}{0.1}$	
		= 1570.7963	
		= 1571;	1
	(c)	From kinetic energy to heat and sound;	1
	an 15	K.E = the work done against friction;	1
		$\frac{1}{2} \times 0.06 \times 800 \times 800 = F \times 0.15;$	1
		F = 12800N;	1
		1 - 1200011,	
10	7.3	TT 41	
19.	(a)	Upthrust = it's weight	4
		OR weight of fluid displaced by body equals the weight of the body;	1
		OR It's density in less than that of fluid.	
	(b)	Ship has a large air space;	1
	500 min 1 000	Average density of ship is less than density of water;	1
		j j j	
	(c)	To sink, water is allowed into ballast tanks;	1
	(0)		1
		To float, pumps are used to expel water from the ballast tanks;	1
	1000000000		ĭ
	(d)	(i) Upthrust = $W_1 - W_2$;	1
		= (0.60 - 0.28)	
		$= 0.32 \mathrm{N};$	
		weight of substance	
		(ii) Relative density = $\frac{\text{weight of substance}}{\text{weight of equal volume of water}}$;	1
			4 77
		$=\frac{0.08}{0.32}$;	1
		= 0.25:	1
		— VI.Z.I.	2 €3

10.2 Physics Paper 2 (232/2)

1.

Figure 1

Figure 1 Image (lateral inversion);

(1 mark)

(accept full line)

2.

Pithballs repelling

(1 mark)

- 3. Mica raises capacitance; hence lower potential difference; since V = Q/C but Q is constant.
- 4. A = Carbon rod (+);

(1 mark) (1 mark)

B = Manganese (VI) oxide

5. Manganese (IV) oxide is a depolarizer/oxiding agent;

(1 mark)

6. Hammering causes domains/domains to vibrate;
As they settle, some face North South due to earth's magnetic field;

(2 mark)

7. When S is closed, current flows in solenoid magnetizing the iron core; this attracts the iron armature closing the contacts; this causes current to flow in the motor circuit;

Motor keeps running continuously; (3 marks)

8. Steel would remain permanently magnetized causing current in mortor circuit to remain ON when S is open. (2 marks)

9. (a)

Figure 3

Any two correct vertical lines

(b) $2.5\lambda = 10 \text{ x 5}$ $\lambda = 20 \text{ cm}$; (1 mark)

10.

Figure 4

(3 marks)

11.

$$P = \frac{V^2}{R}$$

$$= \frac{6 \times 6}{4}$$

$$= \frac{36}{4} = 9W$$
(2 marks)

12. Radiowaves Microwaves Yellow light Gamma rays; (1 mark)

13. High voltage leads to low current hence low power (I²R) losses; (1 mark)

14. The minimum frequency of an incident radiation to cause emission of photo electrons. (1 mark)

SECTION B

15. (a)

- (i) Does not obey ohm's law;. (1 mark)
 Graph is non-linear i.e. current is not directly proportional to p.d.; (1 mark)
- (ii) at I = 1.5A R = gradient of tangent at I $= \frac{9.2 - 4.8}{3.6 - 0.1}$ $= \frac{4.4}{3.5}$ $= 1.26\Omega \pm 0.1$;

(2 marks)

at I = 3.5AR = grad

R = gradient of tangent at I = $\frac{9.4 - 7.2}{5.4 - 1.5}$ = $\frac{2.2}{3.9}$ = $0.56\Omega \pm 0.1$;

(2 marks)

(iii) R decreases as I increases;

(1 mark)

(iv) Change (increase) in temperature;

(1 mark)

(b) (i) $V_{\text{total}} = 1.6 + 1.6 + 1.6 = 4.8V = E;$

(1 mark)

(ii) Let r to be the combined internal resistance

Using E = I (R + r); 4.8 = 0.32 (11.4 + r);for one cell, $r = \frac{15 - 11.4}{3}$

 $= 1.2\Omega \tag{3 marks}$

- 16. (a) The point at which rays close to and parallel to the principal axis converge or seem to diverge from after striking the lens; (1 mark)
 - (b) (i)

- (ii) Candle is placed at a certain distance from the lens. The distance between the screen and the lens is adjusted until a sharp image is focused on screen.
- (iii) The distance of candle from lens (U) is measured; The distance of screen from lens (V) is also measured;

(3 marks)

(iv) The values of U and V are substituted in the equation

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

f is then computed as

$$f = \frac{uv}{u + v}$$

(2 marks)

(b)

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

$$\frac{1}{v} = \frac{1}{-20} - \frac{1}{30}$$

$$\frac{1}{v} = \frac{-3 - 2}{60}$$

$$\frac{1}{v} = \frac{-5}{60}$$

$$v = -12$$

$$M = \frac{v}{u}$$
$$= \frac{-12}{30}$$
$$= 0.4$$

(4 marks)

17. (a) The production of induced e.m.f when the magnetic flux linking a circuit is changed;

(1 mark)

(b) (i) P-brushes

Q - slip rings

(ii)

(1 mark)

(iii) Increasing number of turns/coils;Increasing speed of rotation;Increasing strength of field;Winding the coil on soft iron core.

Any two correct

(2 marks)

(c) (i)
$$Vs = 200 \times 0.5$$

= 100V;

(1 mark)

(ii)
$$\frac{N_p}{N_s} = \frac{V_p}{V_s}$$
$$V_p = \frac{100}{10} \times 1 = 10V$$

(2 marks)

(iii)
$$\frac{V_p}{V_s} = \frac{I_s}{I_p}$$

$$\frac{10}{100} = \frac{0.5}{I_p}$$

$$I_p = \frac{0.5 \times 100}{10}$$

$$I_p = 5A$$

(2 marks)

- 18. (a) -Cathode rays have charge but e.m radiations don't have charge;
 - -Cathode rays are particles and have a mass but e.m radiations are waves;
 - -Cathode rays travel at a speed depending on the accelerating voltage but e.m radiations travel at the speed of light in vacuum;
 - Different in the mode of production.

(any two correct) (2 marks)

(b) (i) M - grid;

N - accelerating anode/anode/vacuum;

(2 marks)

(ii) Cathode is heated by filament; electrons are released from cathode; by thermionic emission

(2 marks)

- (iii) (I) across Y-Y plates.
 - (II) across X-X plates.

(2 marks)

(iv) to reduce collisions, (hence ionization) with air molecules in the tube.

(1 mark)

(c) (i) peak-to-peak voltage = 5×2 = 10v

(ii)

19. (a) α - radiation;

short range with intense ionization hence thick tracks;

(2 marks)

(b) No. of half-lifes =
$$\frac{19.15}{3.83}$$
 = 5

Activity

0	1	2	3	4	5
0	3.83	7.66	11.49	15.32	19.15
1.6×10^3	8 x 10 ²	4 x 10 ²	2×10^{2}	1 x 10 ²	0.5×10^{2}
	$0 \\ 0 \\ 1.6 \times 10^{3}$	$ \begin{array}{c cc} 0 & 1 \\ 0 & 3.83 \\ \hline 1.6 \times 10^3 & 8 \times 10^2 \end{array} $		The state of the s	

Activity $= 0.5 \times 10^2$

= 50 disintegrations per second

(2 marks)

(c) A semiconductor in which impurities have been added to change conductivity.

(1 mark)

(d) By connecting it in forward biased mode (i.e. P to + and n to -)

(1 mark)

(e)

(i) Correct diode direction;

(2 marks)

(ii) Across QS;

(1 mark)

10.3 Physics Paper 3 (232/3)

1. Part A

(a) Eo $3.0 \pm$ 0.2V

(1 mark)

(d) Table 1

AO= Bo = Xcm	25	30	35	40	45	50
p.d √ (V)	0.58	0.66	0.74	0.80	0.90	0.92
$\frac{1}{x}$ (Cm ⁻¹)	0.04	0.033	0.029	0.025	0.022	0.02
1/v (V-1)	1.72	1.52	1.35	1.25	1.11	1.10

for $V \frac{1}{2}$ mark for each correct value (3 marks)

 $\frac{1}{x}$ 1 mark for at least 4 correct values (1 mark)

 $\frac{1}{V}$ 1 mark for at least 4 correct values (1 mark)

(e) graph (see attached)

> axes labelled + units (1 mark)

> suitable scale (1 mark)

(2 marks)

points plotted $\frac{1}{2}$ mark for 4 points straight line (1 mark)

(f) Slope - correct interval $\frac{\Delta y}{\Delta x}$ (1 mark)

> correct evaluation (1 mark)

 $S = 34 \pm 3$ (1 mark)

h correctly evaluated from $\frac{8}{E_o S}$ (g)

substituting (1 mark) evaluating

(1 mark)

1 PART B

(i) OM and ON shown on outline.

(1 mark)

 $\angle M\hat{O}N = 2A = 144^{\circ}$

(ii) q correctly evaluated

(1 mark)

Total (19 marks)

2. PART A

(a) $M_1 = 53.5g$

(1 mark)

(b) $M_2 = 73.0g$

(1 mark)

(c) Correct mass liquid L = 19.5 g.

(1 mark)

density = evaluate from candidates values of M_1 and M_2

PART B

(f) Table 2

Time in minutes	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Temperature of W(°C)	80	79	77.5	76	75	74	72.5	71	70	69
Temperature of L(°C)	80	76	75	72	70	68	66	64.5	62.5	61.0

5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
68	67	66	65	64.5	63.5	62.5	61.5	61	60	is
59										

Correct temperatures of distilled water

6 points x

(3 marks)

5 to 9 points

(1 mark)

Correct temperatures of L

8 and more

(3 marks)

4 to 7 points

(1 mark)

(h) Graphs (see attached graphs)

(i) - axis labelled + units

(1 mark)

- appropriate scale

points plotted correctly

6 correct points

(2 marks)

3-5 correct points

(1 mark)

smooth curve

(1 mark)

(ii) - points plotted correctly

- 6 correct points (2 marks) - 3 - 5 correct points (1 mark) (1 mark) smooth curve points (i) (i) (value obtained from the graph (1 mark) (value obtained from the graph (1 mark) $\frac{4.2 \times 2.5}{0.78 \times 4.5}$ correct evaluation (j) (1 mark) $r = 3.0 \pm 0.1$ (1 mark) Total (20 marks)