4.6 **CHEMISTRY (233)**

4.6.1 Chemistry Paper 1 (233/1)

1. Increasing the size of the air hole/increase the amount of air/open air holes competely. (1)

2. (a) $HSO_{3}^{-}(1)$

(b)
$$HSO_{3}^{-1} + H^{+}_{(aq)} \longrightarrow H_2O_{(l)} + SO_{2(g)}$$

or

 $NaHSO_{3(s)} + H^{+}_{(aq)} \longrightarrow Na^{+}_{(aq)} + H_2O_{(l)} + SO_{2(g)}$

- 3. (a) The anhydrous copper (II) Sulphate turns from white to blue. (1)
 - A grey solid is formed/droplets of a colourless liquid condense at cool part.(1)

(1)

- (b) Reducing property.(1)
- 4. Add soluble carbonate/Add soluble hydroxide. (1)
 - Filter out the zinc carbonate/filter the zinc hydroxide.
 - Heat strongly the $ZnCO_3$ to decompose it to form ZnO/Heat strongly the $Zn(OH)_2$ to decompose it to form ZnO. (1)

OR

- Heat to evaporate the water. (1)
- Heat $ZnSO_4$ solid to decompose (1) to form ZnO/yellow solid. (1)
- 5. (a) delocalised electrons. (1)
 - (b) ions in the melt. (1)

6.
$$\frac{T_{1}}{T_{2}} = \sqrt{\frac{M_{1}}{M_{2}}} \quad (\frac{1}{2}) \quad \text{Ethane} (C_{2}H_{6}) = 30 \quad (\frac{1}{2})$$
$$\left(\frac{121}{100}\right) = \sqrt{\frac{Q}{30}} \quad (1)$$
$$\left(\frac{121}{100}\right)^{2} = \frac{Q}{30}$$
$$\left(\frac{121}{100}\right)^{2} x \ 30 = Q$$
$$43.923 = Q$$
$$44 = Q \quad (1)$$

7. (a)

- (b) Used in packaging cushions electronics in boxes/insulation/models/ceiling strips/ crates or binding. (1)
- 8. (a) $\frac{226}{88}Q \rightarrow \frac{222}{86}P + \frac{4}{2}He$ (1)
 - (b) (i) Cobalt 60 is used to detect the activity of the thyroid gland. (1)
 - (ii) To sterise equipment/treatment of cancer/radio active Na for disorders in blood circulation/Barium meal for ulcers/detect fractures in bones. (1)
- 9. The molecules of ethanoic acid interact through strong hydrogen bonding (1) forming a dimer while molecules of pentane have weak van der waals forces. (1) NB/ Ethanoic acid has hydrogen bonds while pentane does not have.
- 10. (a) Roast ore in air/heat in air. (1)

 $2\text{CuFeS}_{2(\text{s})} + 4\text{O}_{2(\text{g})} \longrightarrow \text{Cu}_2\text{S}_{(\text{s})} + 2\text{FeO}_{(\text{g})} + 3\text{SO}_{2(\text{g})}$

- (b) Acid rain that corrodes stone work on buildings/land gulleys/dust pollution. (1)
 - SO2 when breathed in causes bronchitis/chlorosis in plants. (1)
- 11. Z is SO_2 / sulphur (IV) oxide. (1)

M is H_2SO_3 / sulphuric (IV) acid. (1)

12. A (1) and D (1)

A is acidic it will neutralise $Pb(OH)_{2(aq)}$ to form salt and water, $\binom{1}{2}$ D is a strong base it will react with Pb $(OH)_{2(aq)}$ to form a complex ion. $\binom{1}{2}$ Lead (II) hydroxide is amphoteric. 13. Moles of NaOH $\frac{18}{1000} \times 0.1 = 0.0018 \ (\frac{1}{2})$

Moles of acid $\frac{18}{1000} \times 0.1 \times \frac{1}{2} = 0.0009 \ (\frac{1}{2})$

Moles in 100 cm³

$$\frac{18}{1000} \times 0.1 \times \frac{1}{2} \quad \frac{100}{25} = 0.0036 \text{ moles} \quad (\frac{1}{2})$$

Ratio of acid : Carbonate

Original moles of acid
$$= \frac{100}{1000} \times 0.05$$

 $= 0.005 / 0.53g$ $(\frac{1}{2})$
 $0.005 - 0.0036 = 0.0014 \text{ moles } / 0.3816g$ $(\frac{1}{2})$
Mass of Na₂CO₃ $= 0.0014 \times 106 / 0.53 - 0.3816$
 $= 0.1484 \text{ g} = 0.1484 \text{ g} (\frac{1}{2})$
14. (a) Total volume of solution $= 40 \text{ cm}^3 / 40 \text{ g}$ $(\frac{1}{2})$
 $\Delta H = 40 \times 6.7 \times 4.2$ $(\frac{1}{2})$
 $= 1125.6/1000$
 $= 1.1256 \text{ KJ}$
Moles of acid $\frac{20}{1000} \times 1 = 0.02 \text{ moles}$ $\frac{1125.6}{0.02}$
 $0.02 \text{ moles} = 0.1256 \text{ KJ}$
 $1 \text{ mole} = \frac{1.1256}{0.02} (\frac{1}{2})$ $-56280 \text{ j/mol} (\frac{1}{2})$

= -56.28 KJ / mol $(\frac{1}{2})$

 $\left(\frac{1}{2}\right)$

(b) Some energy is used to ionise the weak acid first before it can neutralise. So not all energy is used in neutralisation. (1)

15. (a)
$$3CuO_{(s)} + 2NH_{3(g)} \longrightarrow 3Cu_{(s)} + N_{2(g)} + 3H_2O_{(l)}$$
 (1)

(b) It changed purple (1)

The excess ammonia makes solution basic which turns purple with universal indicator.

(1)

- 16. (a) (i) It turned brown /blue/violet/green. (1)
 - (ii) The water level rose up the gas jar/occupy space left by reacted O_2 . (1)
 - (b) The brown colour would be more since the salt accelerates rusting/rust faster. (1)
- 17. (a) Rate increases. (1)
 - (b) Temperature increases the kinetic energy (1) of the particles increasing the number of collisions. (1)
- 18. (a) N (1)
 - (b) R (1)
 - (c) M_3N_2 (1)

19.

20. Vanadium (V) oxide is cheaper (1) and is not easily poisoned by impurities. (1)

21. Y = 2.8.3Z = 2.7(1)

- 22. (a) Condensation of alcohol with higher boiling point so that it runs back to the flask as the alcohol with lower boiling point distills over. (1)
 - Methanol. (1) It has a lower boiling point due to the size of carbon chain when (b) compared with propanol. (1)
- Step 1 is neutralisation. (1) 23. (a)
 - Step II is soda lime/ mixture of NaOH and CaO. (1) (b)

- Fuel/making ethene/making hydrogen gas. (1) (c)
- 24. Anode - Oxygen O_2 (1) (a)

Cathode - Hydrogen / $H_{2}(1)$

(b)
$$2\text{Cl}_{aq} \rightarrow \text{Cl}_{2(g)} + 2e$$

25.

	С		Η		Cl		
Mass(g)	37.21		7.75		55.04		$(\frac{1}{2})$
	37.21	_	7.75		55.04		$(\frac{1}{2})$
	12		1		35.5		
Moles	<u>3.10</u> 1.55	_	<u>7.75</u> 1.55		<u>1.55</u> 1.55		$(\frac{1}{2})$
Ratio	2	:	5	:	1		
Empirical for Empirical ma	rmula C ₂ l uss 64.5n n n	H ₅ C1 = = =	$(\frac{1}{2})$ 2 x 12 65 65/64. 1	+5+3 5 $(\frac{1}{2})$	5.5 = 6	54.5	
∴ mo	lecular f	ormula	=	C_2H_5C	21	$\left(\frac{1}{2}\right)$	

- 26. Natural polymers are biodegradable (1) and are expensive. (1) Affected by acids/Not easily recyled.
- 27. (a) Acetone / ethanol / propanone / propanol. (1)
 - (b) The solvent dissolves the organic compound indicator present in the flowers / it is an organic solvent. (1)
- 28. (a) It absorbs carbon (IV) oxide present in the air. (1)
 - (b) Copper $/Cu_{(s)}$ (1)
 - (c) It has rare noble gases which have not been removed / Argon. (1)
- 29. (a) A radical is a compound formed when elements combine to form ions / free unstable atoms or molecules / a group of free unstable atoms exist in a compound /group of atoms with a common charge. (1)
 - (b)

Element	Ν	S
Н	NH ₄ ⁺	
0	$\frac{\text{NO}_2^-}{\text{NO}_3^-}$ (1)	$SO_{3}^{2-}; S_{2}O_{3}^{2-}$ $SO_{4}^{2-}; S_{2}O_{7}^{2-}$ (1)

30. (a) A colourless gas is formed /chlorine water decompose to give oxygen $(\frac{1}{2})$ The colour of solution changes from green to colourless / chlorine water becomes hydrochloric acid. $(\frac{1}{2})$ The level of solution in the gas jar drops oxgen formed occupies space pushing water downwards. $(\frac{1}{2})$

(choose any 2)

(b)
$$6\text{KOH}_{(aq)} + 3\text{Cl}_{2(g)} \longrightarrow \text{KClO}_{3(aq)} + 5\text{KCl}_{(aq)} + 3\text{H}_2\text{O}_{(l)}$$
 (1)

4.6.2 Chemistry Paper 2 (233/2)

1.	(a)	(i)	Sodium chloride / potassium chloride /rock salt.	
		(ii)	Concentrated sulphuric (VI) acid	(1 mark) (1 mark)
		(iii)	Grey solid turns green	(1 mark)
		(iv)	$\operatorname{Fe}_{(s)} + 2 \operatorname{HCl}_{(g)} \longrightarrow \operatorname{FeCl}_{2(s)} + \operatorname{H}_{2(g)}.$	(1 mark)
		(v)	To avoid explosion.	(1 mark)
	(b)	(i)	I The gas reacts with silver nitrate to form insoluble silver chlor	ride. (1 mark)
			II Both gases form ammonium chloride which is white.	(1 mark)
		(ii)	 To make hydrochloric acid. Manufacture of ammonium chloride. Manufacture of PVC. Making chloroethene (yynil chloride) 	(1 mark)
				(1 mark)
	(c)	(1)	Q is Ca(OH) ₂ (aq) /calcium chloride	(1 mark)
		(ii)	Presence of Ca^{2+} which make water hard / forms scum.	(1 mark)
2.	(a)	(i)	K - Has largest atomic radius / it most readily loses its outermost electronic radius	ctron.
		(ii)	B /N	(1 mark)
		(iii)	D / Mg	(1 mark)
		(iv)	$A^{(1)}$ It has the smallest/smaller atomic radius/ its outermost electron more/most strongly held by nucleus. ⁽¹⁾	is (2 marks)
		(v)	P^{H} is seven (7). The chlorides of group 1 elements are neutral salts.	(2 marks)
	(b)	(i)	Both CaCl ₂ and MgCl ₂ have mobile ions in molten state ⁽¹⁾ while bot SiCl ₄ are molecular compounds with no mobile ions ⁽¹⁾ .	h CCl ₄ and
		(ii)	Neon has molar mass of 20 while Flourine has a molar mass of 38 (1). Therefore Neon diffuses faster. (1) Since it has a lower molecular matfaster the rate of diffusion.). Iss the

3. (a) (i)

(c)

Manufacture of ethanoic acid/vinegar Used in themometers Manufacture of other organic compounds. Any 2

- 4. (a) -
 - Concentration

Pressure

- Catalyst
- Particle size/surface area
- Light intensity
- (b) (i) Draw a tangent to the graph at 12 min. (1) Determine change in volume $(\frac{1}{2})$ /Calculate gradient. Determine change in time. $(\frac{1}{2})$ Divide change in volume by change in time (1)
 - (ii) AB Low production of gas(1) while BC the rate is very high because catalyst B was added. ⁽¹⁾

(iii)
$$2H_2O_{2(aq)} \longrightarrow O_{2(g)} + 2H_2O_{(l)}^{(1)}$$

- (c) (i) Lowering the temperature shifts the equilibrium to the right /favours the forward reaction. ⁽¹⁾ Hence more SO_3 will be produced. ⁽¹⁾
 - Platinum or Vanadium pentoxide/vanadium (v) oxide / V₂O₅/ platinised asbestos

(2 marks)

(1 mark)

(1 mark)

5. (a) (i) Cation present in solution \mathbf{D} is H^+

(ii)
$$Ba_{(aq)}^{2+} + SO_{4(aq)}^{2-} \longrightarrow BaSo_{4(s)}^{(1)}$$

(iii) Zinc disappears /zinc dissolves.
 Blue colour disappears and brown solid is deposited.⁽¹⁾
 Zinc being more reactive than copper displaces /Cu²⁺ ions from solution, copper which is brown is formed.⁽¹⁾

Apparatus feels warm/reaction is exothermic.

- (iv) The reaction forms $CaSO_4$ which is insoluble $\binom{1}{1}$ the insoluble $CaSO_4$ coats the surface of calcium preventing further reaction. $\binom{1}{1}$
- (v) Making plaster of paris / making plaster. (1)

- (b) Dissolve sodium chloride in distilled water. $(\frac{1}{2})$ Add aqueous lead nitrate. (1) Filter the mixture, $(\frac{1}{2})$ wash residue with distilled water. $(\frac{1}{2})$ Dry residue in oven at controlled temperatures/ between filter papers. $(\frac{1}{2})$
- (c) (i) It absorbs moisture/water. / deliquescent / hygroscopic ⁽¹⁾
 - (ii) Conc. $H_2SO_4(1) / H_2SO_{4(1)} / \text{ concentrated sulphuric (VI) acid/}$

(a) On the diagram (1)

(b)
$$2O_{(1)}^2 \rightarrow O_{2(g)} + 4e^{-(1)}$$

- (c) Below 950 °C, the electrolyte is not in molten state.⁽¹⁾
- (d) Aluminium is more reactive than $(\operatorname{coke})^{(1)}$ therefore the reduction process is not possible / carbon / carbon (II) oxide / coke cannot reduce Al_2O_3 .
- (e) Aluminium is less reactive than Sodium (1) \therefore It is preferentially discharged.
 - Al^{3+} ions are in higher concentration than Na^{+} .⁽¹⁾
- (g) Global warming due to production of CO_2 / F_2 pollution. ⁽¹⁾
 - Creation of gullies during excavation. ⁽¹⁾
- (f) Light ⁽¹⁾
 - Strong (1)

7.

Solvent molecules move further apart hence more solid particles dissolve / creating more space for solid particles⁽¹⁾ ... The solubility increases.⁽¹⁾

(a)

(3 marks)

- (ii) (I) Value read from the graph ⁽¹⁾
 - (II) 10.5 g (value read) (1)
- (iii) Salt identified from the graph (1)

(iv) Solubility of
$$K_2 SO_4 = 12.8^{(\frac{1}{2})} g/100 g$$

Mass of K₂SO₄ in 100 cm³ =
$$\frac{12.8 \times 1000}{100}$$
 ($\frac{1}{2}$)
= 128 g($\frac{1}{2}$)

Molar mass of
$$K_2 SO_4 = 174g^{\left(\frac{1}{2}\right)}$$

Conc of $K_2 SO_4 = \frac{128}{174} \left(\frac{1}{2}\right) = 0.7356M \left(\frac{1}{2}\right)$

(v)

Filter crystals of $K_2SO_4^{(\frac{1}{2})}$ Dry between filter papers. $\frac{1}{2}$)

4.6.3 Chemistry Practical Paper 3 (233/3)

1. **Table 1**

	Ι	II	III
Final burette reading	41.20	19.20	38.00
Initial burette reading	22.00	0.10	19.00
Volume of solution K used (cm ³)	19.20	19.10	19.00

(3 marks)

(1 mark)

(i) Average
$$\frac{19.2 + 19.1 + 19.0}{3} = 19.10 \text{ cm}^3$$

(ii)	Moles of Sodium thiosulphate	$=\frac{19.1 \times 0.1}{1000}$	(1)
		= 0.00191	(1)
	\therefore Moles of Copper ions in 25 cm ³	= 0.00191	

11		
Moles in 250 cm ³	= 0.00191 × 10	
	= 0.0191	(1)
Concentration of Copper ions	$= \frac{0.0191 \times 1000}{25}$	(1)
	= 0.764 M	$(\frac{1}{2})$

2. **Table 2**

Volume of NaOH added (cm ³)	0	5	10	15	20	25	30
Maximum Temperature (°C)	22.5	24.5	26.5	27.0	27.0	26.5	26.0

 $(3\frac{1}{2} \text{ marks})$

(i) Graph

		Moles of Cu ²	$2^{+} = \frac{20 \times 10^{-10}}{10^{-10}}$	<u>0.764</u> 000		
			= 0.015	528	$\binom{1}{2}$	
		1 mole	$=\frac{720.}{0.01}$	$\frac{721}{528}$ (1)		
			= -47.2	KJMol ⁻¹	$(\frac{1}{2})$	
2.	(a)	White crystalline sul	ostance.			
	(b)	Observations		Inference	ces	
		Colourless liquid co on the cool parts of leaving behind a wh	ondenses T-Tube nite solid	Hydrated water of	d salt or salt conta crystallisation	iins
		(1 mark)		(1 mark)		
	(c)	Solid dissolves to for colourless solution	orm	P is solut No colou	ble in water red ions	
		(1 mark)		(1 mark)		
	(d)	(i) White PPt forme	ed	SO ₄ ²⁻ , S	O_3^{2-} or CO_3^{2-} pre	sent
		(1 mark)		(2 marks)	
		(ii) No effervescent bubbles	ce or no	SO_4^{2-} , prabsent	resent or SO_3^{2} or	• CO ₃ ²⁻
		(1 mark)		(1 mark)		
		(iii) White PPt		Mg ²⁺ pre	esent	
		(1 mark)		(1 mark)		
	(e)	Cation		Mg ²⁺ or Mag	nesium ions	$(\frac{1}{2})$

(1 mark)

anion SO_4^{2-} or Sulphate ions $\binom{1}{2}$

(a)		
	Observations	Inferences
	Burns with a yellow sooty flame or luminous flame.	$\begin{array}{cccc} I & I \\ C & = & C \\ I & I \end{array} \text{or} -C \equiv C - \end{array}$
		Organic compound with high C:H ration aromatic compound, long chain organic compound.
	(1 mark)	(1 mark)
(b)	(i) Efferescence observed	Has a - COOH group or carboxylic/alkanoic acid.
	(1 mark)	(1 mark)
	(ii) Decolourised	Could be an alcohol or has

(1 mark)

3.

(1 mark)