
4.6 PHYSICS (232)

4.6.1 Physics Paper 1 (232/1)

SECTION A

Correct reading √(1)

2. Volume =
$$21 - 19$$

= 2 cm^3

Volume of 1 drop =
$$\frac{2}{50}$$
 = 0.04 cm³ $\sqrt{ }$

2

3.
$$Mg_e = Ke_e : K = \frac{Mg_e}{e_e}$$

 $Mg_m = Ke_m$ (K is constant)

$$Mg_m = \frac{Mg_e}{e_e} \cdot e_m$$

$$g_m = \frac{g_e \cdot e_m}{e_e} = \frac{10 \times 0.01}{0.06} = 1.67 \text{NKg}^{-1} \sqrt{$$
 (3)

4. - depth

٧

- density of the liquid

 $\sqrt{}$

- gravitational field strength

_

2

- 5. The sharp heeled shoe exerts great pressure $\sqrt{\text{due to small surface area of contact }}\sqrt{2}$
- **6.** (a) freezing $\sqrt{}$
 - (b) The intermolecular forces are weaker $\sqrt{}$

1

3

- 7. Both containers have a greater $\sqrt{\text{expansion compared to glass, but A expands faster than B }\sqrt{2}$
 - 2

8. Sum of anti clockwise moments = sum of clockwise moments $\sqrt{}$

$$4 \times 35 + T \times 50 = 8 \times 40$$

 $140 + 50 T = 320 \sqrt{}$

$$T = \frac{320 - 140}{50}$$

$$= 3.6 \text{ N} \sqrt{}$$

- 9. The velocity of air above B is greater than that above A $\sqrt{\text{decreasing the pressure above B}}$ hence the water rises higher in B $\sqrt{}$
- 10. As the balloon rises, the atmospheric pressure reduces $\sqrt{}$ hence the pressure due to the hydrogen gas pushes the walls of the balloon to expand $\sqrt{}$
- 11. To maintain stability

/ (1)

- **12.** B √
 - As the heating continues the hot water rises conventionally, due to the reduced density the hot water remains at the top. $\sqrt{}$ (2)
- 13. Study of motion of bodies under the influence of forces.

(1)

SECTION B

14. (a) (i) Measurement of length PQ = 3 cm

$$\checkmark$$

$$T = \frac{1}{50} = 0.02 \text{ Sec}$$

$$Vpq = \frac{3}{0.02} = 150 \text{ cm s}^{-1}$$

(ii)
$$Vxy = \frac{0.5}{0.02}$$

$$\sqrt{}$$

$$25~\mathrm{cm}~\mathrm{s}^{-1}$$

$$\sqrt{}$$

(iii)
$$a = \frac{\text{final velocity} - \text{initial velocity}}{\text{time taken}}$$

$$\sqrt{}$$

$$=\frac{25-150}{5\times0.002}$$

$$\checkmark$$

$$= -1250 \,\mathrm{cm \, s}^{-2}$$

$$M_1U_1 + M_2U_2 = V(M_1 + M_2)$$

$$\sqrt{}$$

$$5 \times 20 + 8 \times 15 = V(5+8)$$

$$\sqrt{}$$

$$220 = 13V$$

$$V = \frac{220}{13}$$

$$16.92 \, ms^{-1}$$

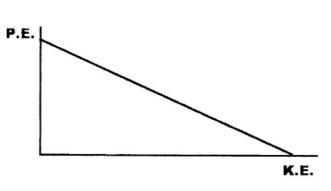
15. (a)
$$K.E. = P.E.$$

$$\frac{1}{2}mV^2 = 00.027$$

$$\frac{1}{2} \times 0.2 \times V^2 = 0.027$$

$$V^2 = \frac{2 \times 0.27}{0.2}$$

$$V = 5.196 \, MS^{-1}$$


4

(4)

(b) Reduces the effort required to raise the $\sqrt{\text{load}}$ (increases the mechanical advantage.)

3

(c)

(d) (i) $\frac{F_1}{A_1} = \frac{F_2}{A_2}$

$$\frac{90}{\pi . 3^2} = \frac{F_2}{\pi . 9^2} \qquad \qquad \checkmark$$

$$F_2 = \frac{\pi.9^2.90}{\pi.3^2} \qquad \qquad \checkmark$$

$$= 810 \text{ N}$$

- Straight line with negative gradient $\sqrt{}$
- axis touched √

(ii) Efficiency = $\frac{MA}{V.R} \times 100\%$

$$MA = \frac{L}{E} = \frac{810}{90} = 9$$

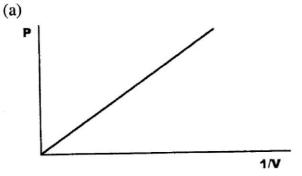
$$V.R = \frac{81}{9} = 9$$

Efficiency =
$$\frac{9}{9} \times 100\% = 100\%$$

√ (3)

- **16.** (a) (i) ammeter in series $\sqrt{\text{voltmeter in parallel }}\sqrt{\text{voltmeter in parallel}}$
 - (ii) ammeter reading (current) √
 voltmeter reading (voltage) √
 - time

- (3)
- (iii) Electrical energy supplied = heat gained by solid


$$Vit = mc (\theta - \Theta_1)$$

or C =
$$\frac{\text{Vit}}{\text{mc}(\theta - \theta_1)}$$
 (2)

- (b) reduce the diameter of the bore $\sqrt{}$
 - use a thin walled bulb √
 - use a liquid with a high expansivity $\sqrt{}$

3

17.

- a straight line through the origin $\sqrt{}$

(b) $\frac{P}{T}$ = constant at constant volume

as temperature increases, the kinetic energy of the molecules increases $\sqrt{\text{causing}}$ more collisions hence increased pressure.

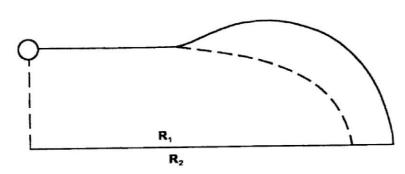
(c)

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

$$\sqrt{}$$

$$\frac{760 \times 20}{298} = \frac{900 \times 15}{T_2}$$

$$\sqrt{v}$$


$$T_2 = \frac{900 \times 15 \times 298}{760 \times 20}$$

$$= 264.67 \text{ K}$$

4

(d) (i)

(ii) Spinning causes high velocity of air above $\sqrt{}$ the ball hence reduced pressure $\sqrt{}$ which causes the ball to rise higher.

18.

8. (a)

(i)

Tension (T)Weight (Mg)

 $\sqrt{}$

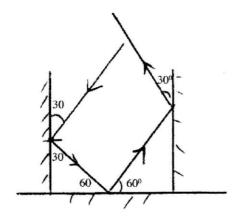
2

- (ii) Tension increases
 - Weight remains constant

2

- (iii) Centrifuges
 - Speed governors
 - Merry-go-rounds

 $\sqrt{}$


(any other relevant two correct)

2

(b) When heated the density of the water decreases $\sqrt{\text{hence block sinks further }\sqrt{\text{as it}}}$ displaces more volume of water.

4.6.2 Physics Paper 2 (232/2)

1.

- Correct angle at every surface

Arrow on rays

(3 marks)

2. Positive charge

(1 mark)

3. To maintain the relative density of the electrolyte.

(1 mark)

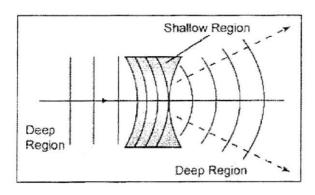
4. - The suspended magnet is repelled

- End B of the electromagnet attains a north pole when current flows.

(2 marks)

5. Has a wide field of view.

(1 mark)


- 6. Increase the magnitude of current.
 - Increase the number of turns per unit length.
 - Increase cross sectional area.
 - Use of soft iron core.

(2 marks)

- 7. Electromagnetic waves do not require a material medium while mechanical waves require a material medium for transmission.
 - Electromagnetic waves travel at the speed of light while mechanical waves travel at slower speeds.

(2 marks)

8.

- decreased wavelength in shallow region
- diverging after refraction to the deep region.

9.
$$V = \lambda f$$

$$V = \frac{7.5}{100} \times 20 \times 1000$$

Depth =
$$\frac{7.5}{100} \times 20 \times 1000 \times \frac{3}{2}$$

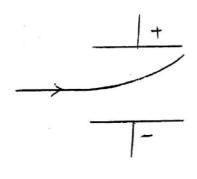
= 2250m

(3 marks

(2 marks)

10.
$$\eta = \frac{real \ depth}{apparent \ depth}$$

$$1.47 = \frac{real\ depth}{6.8} = 9.996$$


real depth = $\simeq 10$ cm

(3 marks)

11. Production of cathode rays / x-rays.

(1 mark)

12.

deflection towards positive plate

(1 mark)

13.
$$V_p I_p = V_s I_s$$

$$200 = 24 I_s$$

$$1_s = 8.33A$$

(3 marks)

14. (a) - Energy of incident radiation

- Work function of the metal

Intensity of the radiation

Any 2 = 2 marks)

(b) (i)

$$E = \frac{hc}{\lambda}$$

$$=\frac{6.63\!\times\!10^{^{-34}}\!\times\!3.0\!\times\!10^{8}}{4.3\!\times\!10^{^{-7}}}$$

$$=4.626\times10^{-19}\,J$$

(3 marks)

(ii) - Potassium

 The work function of potassium is less than the energy of the incident radiation

(2 marks)

(iii)
$$E = Wo + K.E$$

$$4.626 \times 10^{-19} J = 3.68 \times 10^{-19} J + K.E$$

$$K.E = 9.4558 \times 10^{-20} J$$

$$\frac{1}{2}MV^2 = 9.4558 \times 10^{-20}$$

$$V^2 = \frac{9.4558 \times 10^{-20} \times 2}{9.1 \times 10^{-31}}$$

$$V = \sqrt{\frac{9.4558 \times 10^{-20} \times 2}{9.1 \times 10^{-31}}}$$

$$=4.56\times10^{5}\,ms^{-1}$$

(3 marks)

- 15. (a) length of conductor
 - area of cross-section
 - temperature
 - resistivity of conductor

(Any 2 = 2 marks)

(b) When excessive currents flow through the circuit, the wire gets heated and melts hence breaking the circuit.

(2 marks)

(c) (i)

$$I = \frac{P}{V}$$

$$=\frac{2500}{240}$$

$$=10.42 A$$

Fuse not suitable since current through the appliance is higher than the fuse rating.

(3 marks)

(ii) Cost =
$$0.8 \times 3 \times 2.5$$

$$= Ksh. 6.00$$

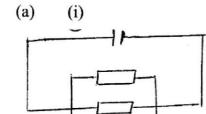
- 16. (a) Alpha particles are heavier and move at lower speeds hence less penetrating power than Beta particles which are lighter and move faster (2 marks)
 - (b) $100\% \xrightarrow{12} 50\% \xrightarrow{12} 25\% \xrightarrow{12} 12.5\%$ = 3 half-lifes
 = 36 years (2 marks)
 - (c) (i) allows the radiations into the tube (1 mark)
 - (ii) absorbs kinetic energy of positive ions so that they do not cause secondary ionization in the tube (1 mark)
 - (d) (i) Short They ionize heavily loosing most of the energy hence cannot travel far.
 - Straight They are massive compared to air molecules hence collision with air molecules cannot change their path.
 - (ii) GM is easily portable than a cloud chamber. (1 mark)
 - GM is more sensitive.
 - GM tube detects radiation at very low intensity and cloud chamber cannot detect radiation at very low intensity. (1 mark)
- 17. (a) distance of separation between plates
 - area of overlap of plates
 - type of dielectric between plates

(3 marks)

- (b) (i) (I) Current rises to maximum and then drops to zero (1 mark)
 - (II) Potential difference between the plates increases to a maximum

(1 mark)

- (ii) Negative charges flow from the negative terminal of the battery to one plate $(\sqrt{})$ of the capacitor. Negative charges flow from the other plate $(\sqrt{})$ of the capacitor to the positive terminal of the cell hence equal positive and negative charges gather on the plates, opposing further flow of electrons when fully charged $(\sqrt{})$ (3 marks)
- (iii) Resistor to slow down the charging process so that current and voltage are is observed. (1 mark)


(iv)

4.5 Prod

(time)

- Parallel arrangement
Circuit symbols

(ii)
$$\frac{1}{R} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

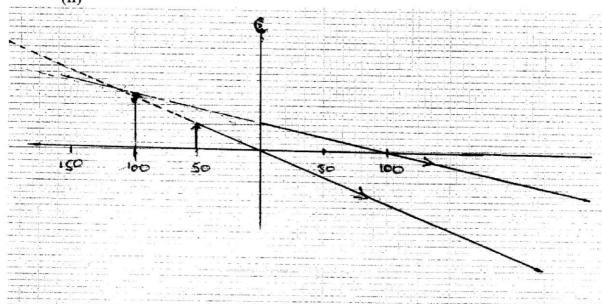
$$R = \frac{12}{13}$$

$$=0.923\Omega$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

$$v = -100 \ mm$$

$$\frac{1}{50} - \frac{1}{100} = \frac{1}{f}$$


$$\frac{1}{f} = \frac{1}{100} \qquad \qquad f = 100 \ mm$$

$$f = 100 mm$$

$$m = \frac{v}{u} = \frac{100}{50}$$

$$=2$$

(ii)

4.6.3 Physics Paper 3 (232/3)

QUESTION ONE

PART A

(a)
$$d = 0.35 \pm 0.02 \,\text{mm}$$
 (1 mark)

$$d = 0.00035 \,\mathrm{m}$$
 $(3.5 \pm 0.2) \times 10^{-4} \,\mathrm{m}$

(d) D =
$$0.75 \pm 0.05 \,\text{cm}$$
 $0.80 \pm 0.02 \,\text{cm}$ (1 mark)

$$D = (8.0 \pm 0.2) \times 10^{-3} \text{ m}$$

(e)
$$N = 26 \pm 1 \text{ turns}$$
 (1 mark)

(f)
$$X = 3.0 \pm 0.2 \text{ cm}$$
 (1 mark)

$$X = (3.0 \pm 0.2) \times 10^{-2} \,\mathrm{m}$$

(g)
$$c = \frac{0.4}{x}$$

= $\frac{0.4}{0.03}$

$$= 13.00 \pm 2 \text{ Nm}^{-1}$$
 (1 mark)

(h) n =
$$\frac{c8ND^3}{d^4}$$

$$= \frac{13.33 \times 8 \times 26 \times (8.0 \times 10^{-3})^{3}}{(3.5 \times 10^{-4})^{4}}$$

$$= (9.2 \pm 0.2) \times 10^{-10} \text{ Nm}^{-2}$$

(i)
$$t = 9.85s \pm 1.00$$
 (1 mark)

$$T = 0.44s (1 mark)$$

(2 marks)

$$(j) Z = \frac{4\pi^2 m}{T^2}$$

$$Z = 18.00 \pm 2 \tag{2 marks}$$

PART B

(m)

Distance U cm	12	16	20	
Distance V cm	5.2	4.8	4.5	
Constant $y = \frac{uv}{u+v}$	3.6	3.7	3.7	

(4 marks)

(n) m =
$$\frac{y_1 + y_2 + y_3}{3} \simeq 3.7$$

(1 mark)

(o) (i) h =
$$5.0 \pm 0.1$$
 cm

(1 mark)

(ii)
$$P = 2.2 \pm 0.1 \text{ cm}$$

(1 mark)

(iii)
$$f = 1.30 \pm 0.03$$

(2 marks)

QUESTION TWO

(a) d =
$$3.0 \pm 0.1 \times 10^{-4}$$
 m

(1 mark)

$$3.0 \pm 0.1 \times 10^{-1} \text{ mm}$$

(b)
$$E_0 = 3.1 \pm 0.1 \text{V}$$

(1 mark)

(d) (i)
$$I = 0.35 \pm 0.05 A$$

(1 mark)

Table 1

Length RN (m)	0.1	0.2	0.3	0.4	0.5	0.6
P.d (V)	0.45	0.80	1.20	1.60	1.90	2.25
Resistance $\left(\frac{V}{I}\right)(\Omega)$	1.3	2.3	3.4	4.6	5.4	6.4

(4 marks)

(e)

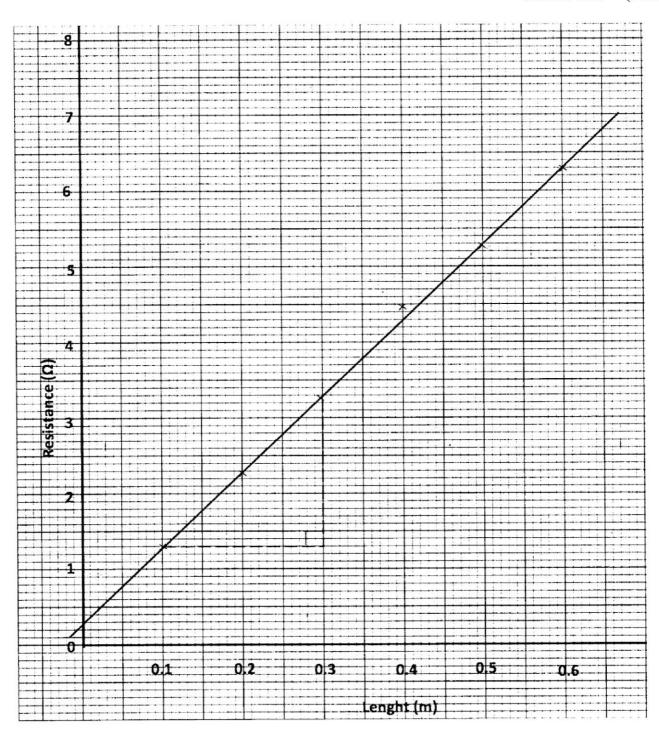
Plotting of points 2
Axis labelled with units 1
Scale suitability 1
Straight line 1

5 marks

(f) (i) Slope =
$$\frac{\Delta R}{\Delta l}$$

correct intervals

(1 mark)


$$= \frac{3.4 - 1.3}{0.3 - 0.1}$$

$$=\frac{2.1}{0.2}$$

$$S = 10.5 \pm 0.2 \Omega m^{-1}$$

(1 mark)

correct unit (1 mark)

(f) (ii)
$$S = \frac{4K}{\pi d^2}$$

$$k = \frac{\pi d^2 s}{4}$$

$$= \frac{\pi \times (3.0 \times 10^{-4})^2 \times 10.5}{4}$$

$$= 74.22 \times 10^{-8}$$

$$= 7.422 \pm 0.2 \times 10^{-7} \Omega \text{ m}$$

OR

$$= 7.422 \pm 0.2 \times 10^{-4} \Omega \text{ mm}$$

(g) t =
$$\frac{E_0 - Vn}{I}$$

$$\frac{3.0 - 2.25}{0.35}$$

$$= 2.0 \pm 0.5 \Omega$$

correct evaluation (1 mark)

correct value (1 mark)

ignore unit