## **4.21 ELECTRICITY (448)**

## 4.21.1 Electricity Paper 1 (448/1)

| 1. (a | a)  -  | Geothermal                                                                             |                                    |
|-------|--------|----------------------------------------------------------------------------------------|------------------------------------|
| ,     | ´  .   | - Solar                                                                                |                                    |
|       | .      | - Biomass                                                                              | 1                                  |
|       |        | - Wind power                                                                           |                                    |
|       |        | - Hydropower                                                                           |                                    |
|       | 3      | - Fuel                                                                                 | Any (4) $x \frac{1}{2} = (2)$      |
|       | b)     | ■ Artisan – a skilled worker who practices a trade or handcraft.(1)                    | (1)                                |
|       | 5. 323 | Technician – a specialist in the technical details of a subject or occ                 | cupation. (1)                      |
| 2. (  | (a)    | - Executive summary                                                                    | l                                  |
| (     |        | - Company description                                                                  |                                    |
|       | 1      | - Market Analysis                                                                      |                                    |
|       | 1      | - Organization and Management                                                          |                                    |
|       |        | - Service or product line                                                              |                                    |
|       |        | - Marketing and sales                                                                  |                                    |
|       |        | - Funding request                                                                      |                                    |
|       | 1      | - Financial projections                                                                | Any $(4 \times \frac{1}{2}) = (2)$ |
|       |        |                                                                                        | 7 ( - 7 ( - 7                      |
|       | (b)    | - Install new electrical system (standardization).                                     |                                    |
| ·     | (0)    | - Maintain all electrical installation in and working order.                           |                                    |
|       |        | <ul> <li>Provide enough socket outlets for equipment in use.</li> </ul>                |                                    |
|       |        | Avoid overloading socket outlets.                                                      |                                    |
|       |        | Provide any accessible and clearly identified switch ratings.                          |                                    |
|       |        | - For portable equipment connect to nearby socket outlets.                             | $A = \{(A = 1/2) = (2)\}$          |
| ļ     |        |                                                                                        | Any $(4 \times \frac{1}{2}) = (2)$ |
| 3.    | (a)    | - Never mix water and electricity.                                                     |                                    |
| 3.    | (a)    | - Pay attention to what appliances are telling you.                                    |                                    |
| 1     |        | Install ground fault circuit tests.                                                    |                                    |
|       |        | <ul> <li>Make sure you are using the right size circuit/breakers and fuses.</li> </ul> | ·                                  |
|       |        | Protect kids with outlet covers.                                                       |                                    |
|       |        | - Avoid cube taps and other outlet stretching devices.                                 |                                    |
|       |        | Avoid out on page 1                                                                    | Any $(2 \times 1) = (2)$           |
|       | (b)    | (i) P.d. $across = 500 \times 0.02$                                                    |                                    |
|       | (b)    | = 10V. 	(1)                                                                            |                                    |
|       |        | P.d. across the junction is therefore                                                  |                                    |
|       |        | (12 - 10) = 2V. 		(1)                                                                  |                                    |
|       |        |                                                                                        |                                    |
| 1     |        | (ii) Power dissipated in the junction.                                                 |                                    |
|       |        | P = VI                                                                                 |                                    |
|       |        | $= 0.02 \times 2$                                                                      |                                    |
|       |        | $= 0.04 \mathrm{W} \mathrm{or}(1)$                                                     |                                    |
|       |        | = 40mW.                                                                                |                                    |

4. (a) Current entering = current leaving

Assuming  $120\Omega$  branch = V

$$150 = \left(V - \frac{12}{270} + \frac{V}{120}\right)(1)$$

$$0.15 = 13V - \frac{48}{1080}$$

$$162 = 13V - 48$$

$$210 = 13V(1)$$

$$\left(\frac{210}{13}\right) = V$$

Current in  $120\Omega$  branch =  $\frac{V}{120}$ 

$$\Rightarrow \left(\frac{210}{13 \times 120}\right) = 134 \text{mA (1)}$$

- (b) e waste is be defined as discarded computers, office electronic equipment entertainment devices, mobile phones, television sets, refrigerators. (1)
   It includes used electronic destined for re-use, resale, salvage, recycling or disposal.
- 5. (a) AND gate (1)

(b)

| IP1 | IP2 | OUTPUT |                                |
|-----|-----|--------|--------------------------------|
| 0   | 0   | 0      |                                |
| 0   | 1   | 0      |                                |
| 1   | 0   | 0      | $(4 \times \frac{1}{2}) = (2)$ |
| 1   | 1   | 1      |                                |

- (c) (i) 101010 into decimal
  - (i)  $2^52^42^32^22^12^0$

$$= 32 + 0 = 8 + 0 + 2 + 0$$

= 42 ten (1)



|        | b) Brown Grey Red Gold                                                                                                                                                            |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        |                                                                                                                                                                                   |  |
| 8.     | A – Pointer B – Air damping chamber C – Spring D – Balance weight E – Coil F – Moving iron  6 x ½ = 3                                                                             |  |
| 9. (a) | Used in: - Filters - Sensors - Transformers - Motors - Energy storage  Any (4 x ½) = (2)                                                                                          |  |
| (b)    | Inductance is the property of an electric conductor or circuit that causes an electromotive force to be generated (1) by a change in the current flowing.                         |  |
| (c)    | (i) $V_p \times I_p = V_s \times I_s$<br>As the ratio is 8:1, step down.<br>Sec voltage $V_s = \frac{V_p}{8}$ } (1) $= \frac{3300}{8} = 4125 \} - (1)$                            |  |
|        | (ii) Assuming no losses input = output (1) $V_p \times I_p = V_s \times I_s$ $\Rightarrow I_s = \frac{V_p I_p}{V_s} = \left(\frac{6.6 \times 1000}{412.5}\right) (1)$ = 16A (1) . |  |



| (b)     | (i) A – magnet                                                              |  |  |  |  |
|---------|-----------------------------------------------------------------------------|--|--|--|--|
|         | B – magnetic field                                                          |  |  |  |  |
|         | C – Coil (armature) D – Slip rings                                          |  |  |  |  |
|         | E – Shift                                                                   |  |  |  |  |
|         | F – Brushes                                                                 |  |  |  |  |
|         | Any 5X1=5                                                                   |  |  |  |  |
| (c)     | At F.S.D. $I = 0.030A$                                                      |  |  |  |  |
|         | V = 0.090V                                                                  |  |  |  |  |
|         |                                                                             |  |  |  |  |
|         | $V_T$ (across terminals) = 100V                                             |  |  |  |  |
|         |                                                                             |  |  |  |  |
|         | $\Rightarrow$ Rm = resistance of multiplier                                 |  |  |  |  |
|         | Voltage (across resistor) = $(100 - 0.090 \text{V})$                        |  |  |  |  |
|         | = 99.91V. (1)                                                               |  |  |  |  |
|         | Since $R = V_I$                                                             |  |  |  |  |
|         | $\Rightarrow R_{\rm m} = \left(\frac{99.91}{0.030}\right) (1/2)$            |  |  |  |  |
|         | $R_{\rm m} = 3330.33\Omega$ (1/2)                                           |  |  |  |  |
| (d)     | A – Final circuit B – Consumer unit                                         |  |  |  |  |
|         | C – Main switch D – Energy meter                                            |  |  |  |  |
|         | E – Cut out $F$ – Supply cable $(6 \times \frac{1}{2}) = 3$                 |  |  |  |  |
| 13. (a) | A magnet is any material that affects iron or material containing iron. (1) |  |  |  |  |
| (b)     | Properties of a magnet                                                      |  |  |  |  |
|         | - All have 2 poles N and S.                                                 |  |  |  |  |
|         | - Exert forces on each other $3 \times \frac{1}{2} = (1\frac{1}{2})$        |  |  |  |  |
|         | - Surrounded by a magnetic field.                                           |  |  |  |  |
| (c)     | Theory of magnetism                                                         |  |  |  |  |
|         | - Whether a material is magnetic or not.                                    |  |  |  |  |
|         | - In some materials groups of atoms are in tiny areas called domains.       |  |  |  |  |
|         | - Arrangement of domains determine state.                                   |  |  |  |  |
|         | - When domains move, the magnet is demagnetized or loses is magnetic        |  |  |  |  |
|         |                                                                             |  |  |  |  |
|         | properties.                                                                 |  |  |  |  |



15. (a)  $X_{\rm C} = \frac{1}{2\pi f C} = \frac{1}{2\pi (100) \times 470} = 3.39 \text{k}\Omega = (2)$ 

$$X_L = 2\pi f L = 2\pi (100) \times 10 = 6.28 \text{ k}\Omega$$
 = (2)

Here  $X_L$  is greater than  $X_C$  and thus (1) = (1) the circuit is more inductive than capacitive.

(1) (½)
Magnitude = 
$$(X_L - X_C) = |6.28 - 3.39| = (2)$$

$$(\frac{1}{2})$$
 = 2.89k $\Omega$  inductive

(b) ToolUse

- Steel rule - measuring and marking

- Scriber - marking

- Engineers square - marking and checking for squareness

Centre punch
Hacksaw
Twist chill
locating holes
cutting metals
drilling

- Files - deburring

Any other suitable answer  $(6 \times \frac{1}{2}) \times 2 = 6$