4.6.2 Physics Paper 2 (232/2)

SECTION A (25 marks)

EC	TION A (25 marks)	(2 marks)
	Cooking/warming/heating	(2 marks)
	Communication / Radar/ measure distances	(2 1)
	Magnetic - Nickel, cobalt	(2 marks)
	Non-magnetic – Tin, copper	
	Measuring distances/ speed of sound.	(1 mark)
	Polarization is the formation of hydrogen gas at the positive terminal of	(1 mark)
	the cell.	
	 Have a wide/wider field of view. 	(2 marks)
	- Form upright images.	
j.	A – South pole	(1 mark)
7.	The light passes through the walls and gets absorbed by the soil, emitting	(2 marks)
	energy of longer wavelengths which cannot penetrate the walls hence get	
	trapped within the green house causing heating.	
8.	•	(1 mark)
9.	-Rays must have direction -Virtual rays dotted	(3 marks)

10.	${}_{z}^{A}X = {}_{z+1}^{A}Y + {}_{-1}^{o}\beta$	(1 mark)
11.	- The leaf falls	(3 marks)
	Charge is induced on the sphere causing repulsion of electrons to the	
	leaf hence leaf falls.	
12.	T = 20 s	(2 marks)
	$f = \frac{1}{T} = \frac{1}{20}$	
	= 0.05 Hz	
13.	$V_T = V_1 + V_2 + V_3$	(3 marks)
	from ohm's law $V = IR$ therefore	
	$I_T R_T = I_1 R_1 + I_2 R_2 + I_3 R_3$	
	but $I_1 = I_2 = I_3 = I_T$ since they are in series	
	$\frac{IR_T}{I} = \frac{I}{I}(R_1 + R_3 + R_3)$	
	$\mathbf{R}_T = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$	
14.	Conversion of the Kinetic energy of the electrons into heat energy/	(1 mark)
	Conversion of electrical energy to heat	

SECTION B (55 Marks)

15.	a)	(3 marks)
		*
	Air	
	(3 marks)	
	C-critical angle	
	C – critical angle	
	1	(3 marks)
	b) (i) $n = \frac{1}{\sin c}$	
	1 1	
	Sin c = $\frac{1}{n} = \frac{1}{1.62}$	
19	$C = 38.1^{\circ}$	
100000	(ii)	(2 marks)
	Emergent Ray	
•	Incident Ray 2 marks	
	B B	
	c) - Dispersion of white light	(2 marks)
	- In periscopes	
	- In Binoculars	
	- In telescopes	
		1

16.	a)	(2 marks)
	i. Radiations cause photo electrons to be ejected from the metal	
	surface (cathode), the electrons are attracted by the anode hence	
	current flows.	
	ii. Use a radiation of higher intensity	(2 marks)
	Source is made moved closer/ increase anode voltage/accelerating	
	voltage.	
	iii. The frequency of the incident radiation is below the threshold	(2 marks)
	frequency of the surface hence no emission can take place.	
	b) (i)	(3 marks)
	$W_{\circ} = hf_{\circ}$	
	$=6.63\times10^{-34}\times5.5\times10^{14}$	
	$=3.647\times10^{-19}$	
	ii.	(4 marks)
	$hf = hf_{\circ} + K.E$	
	$hf = hf_{\circ} + K.E$ $K.E = \frac{hc}{\lambda} - W$	
	$=\frac{6.63\times10^{-34}\times3.0\times10^{8}}{4.5\times10^{-7}}-3.647\times10^{-19}$	
	$=4.42\times10^{-19}-3.647\times10^{-19}$	
	$=7.73\times10^{-20}J$	
	-7.73×10	
7.	a)	(3 marks)
	i. A momentary deflection is observed, Conductor cuts the field.	
	An emf is induced in AB Causing current in the circuit	
	ii. A bigger deflection is observed/ higher current	(1 mark)
	•	

	b) (i)	(3 marks)
	77.77	(6 11111115)
	$\frac{V_p}{V_s} = \frac{N_p}{N_s}$	
	$N_s = \frac{600}{240} \times 12$	
	= 30 turns	
	(ii)	(3 marks)
	$\frac{N_p}{N_s} = \frac{I_s}{I_p}$	
	$I_p = \frac{30 \times 0.5}{600}$	
	=0.025A	
18. (a)	Area of overlap of the plates	(2 marks)
	 Distance between the plates. 	
	 Type of dielectric. 	
	(Any 2)	
	uant .	
(b)	i.	(4 marks)
		(Titurks)
	$\frac{1=1}{C_T} \frac{1}{C_1} + \frac{1}{C_2}$	
	$=\frac{1}{4}+\frac{1}{8}=\frac{2+1}{8}=\frac{3}{8}$	
	$C_{T1} = \frac{8}{3} = 2.67 \mu\text{F}$	
	C=6 \div 2.67 \doteq 8.67 μ F	
	ii. Qin series section	(3 marks)
	Q = CV	
	$=2.67 \times 4.0$	
	=10.68C	
	$Q(4\mu F) = 10.68$	

19.	a) (i) B ₁ - y deflecting plates	(2 marks)
	$B_2 - x$ deflecting plates	
	(ii)	(3 marks)
	Grid; controls the intensity by controlling the number of electrons	
	reaching the screen.	
	If made more negative less electrons pass through.	
	b)	(4 marks)
	$T=8 \times 20 \text{ ms}^{-1}$	
	= 160	
	= 0.16 s	
	$F - \frac{I}{I}$	
	$T - \frac{1}{T}$	
	$F = \frac{I}{T}$ $= \frac{1}{0.16} = 6.25Hz$	
	,c) Tungsten has a high melting point.	(2 marks)
	It can with stand high temperatures.	