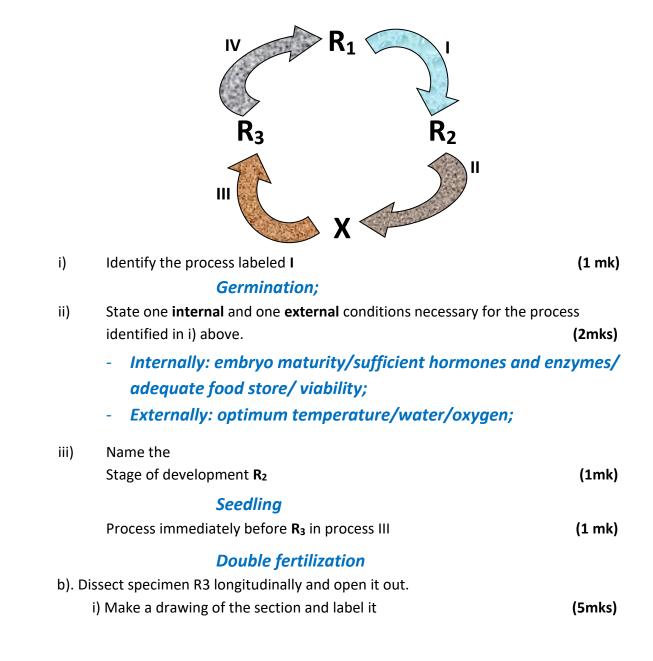
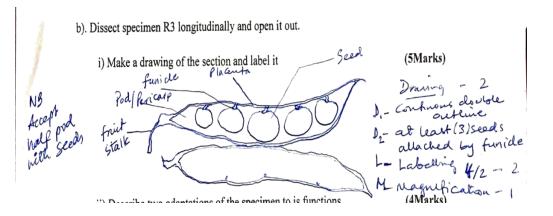
KAPSABET HIGH SCHOOL

(Kenya Certificate of Secondary Education)

INTERNAL MOCK EXAM


Dec. 2020-1 3/4 Hours


MARKING SCHEME

Instructions to candidates

- a) Write your Name, Index, Admission number and stream in the spaces provided above.
- b) Sign and write the examination date on the spaces provided above.
- c) Answer all questions in the spaces provided in the question paper.
- d) All workings must be clearly shown where necessary.
- e) You are required to spend the first 15 minutes of 1 ³/₄ hours allowed for this paper reading the whole paper before commencing your work.
- f) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- g) Candidates must answer the questions in English.

- 1. You are provided with specimens R_1 , R_2 and R_3 representing different stages of plant development. Study the specimen carefully and answer questions relating to them.
 - a). The chart below shows relationship between the specimens.

ii) Describe two adaptations of the specimen to is functions (4mks)

a) Seeds; dispersed for propagation of the plant

- b) Pericarp; protection of immature seeds
 lines of weakness/sutures open up when R₃ matures and dries
- 2. Specimens **U** and **W** have been obtained from different plants.

a). i) Observe the leaves and differentiate them in reference to the following characteristics; (2 mks)

a) m		
k	U	W
i) _s Shape	Trifoliate/ ovate	Lanceolate
ii) Texture	Coarse/rough Limp	Smooth Firm

ii) Using apparatus and materials provided, determine the average surface area of each leaf. (4mks)

Leaf U	Leaf W
(Correct procedure of working out	
surface area (2 marks for each leaf)	

- iii) c). i) Draw two 1cm² squares across the midribs of each the four leaves, two of each U and W.
 - ii) Add some warm water to fill two thirds of a boiling tube.
 - ii) Insert one of leaves U, rolled, with the lower surface facing outward.

iii) Immediately begin counting the bubbles released on both its surfaces, within the two squares for 1 minute.

- iv) Repeat the procedures i) iii) for the second leaf U
- v) Repeat the procedure for the two leaves ${\bf W}$
- vi). Record your results in the table below

(4mks)

Leaf	Number of bubbles	Average
	Lower surface	
U 1	2+3 = 5	Accept values
2	3+3 = 6	below 10
		e.g. 5.5=6
W 1	10 + 12 = 21	Accept values
2	9 + 14 = 23	above those for U

vii) Comment on the observation made on the upper surfaces of the two types of leaves (1 mk)

No bubbles observed for both types of leaves due lack of stomata on the upper surface

d) Calculate the average number of bubbles per cm² for each leaf type. (4mks)

i) Leaf type U

Number of bubbles per $cm^2 = \frac{6}{2} = 3;$

Hence average number of bubbles produced by U in 1 minute = 11x ½ x total surface area of leaf U;

ii) Leaf type W

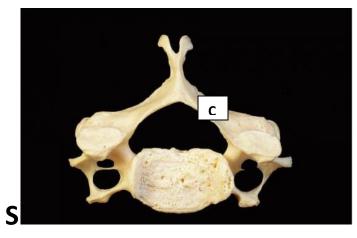
Number of bubbles per $cm^2 = \frac{22}{2} = 11;$

Hence average number of bubbles produced by U in 1 minute = 11x ½ x total surface area of leaf W;

Marshland/ soil with a lot of water/ water logged area/ river side (1mk)

ii) Give a reason for your answer

High rate of water lose can be supported in this habitat;


3. The photos provided for this question are of bones **P** and **S** from the same mammal. **P**₁ and P_2 are photos of the same bone from different views. Study the photographs and answer the questions that follow.

- a) Identify the bones in the photos. Give a reason for each your answers. (4 mks)
 - i) P Atlas vertebra

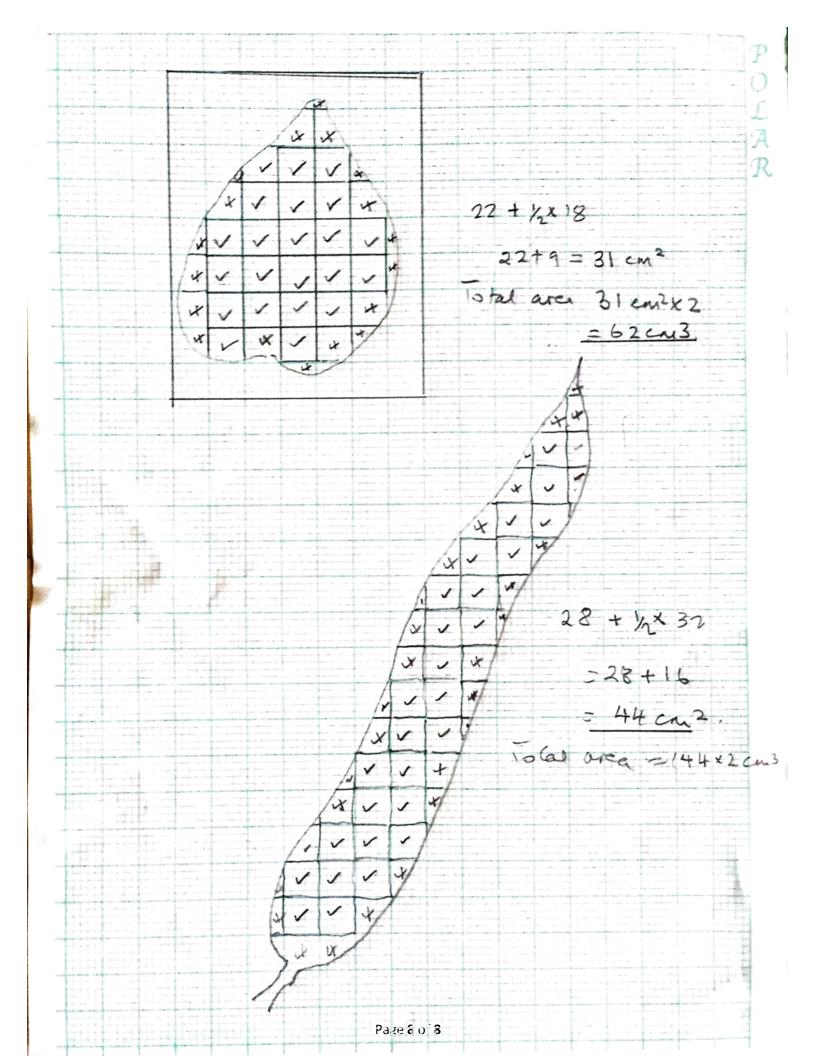
Presence of facets of articulation with condyles of the skull on anterior end

ii) S Typical Cervical vertebra

Presence of branched transverse processes or cervical ribs

(3 mks)

b) Name the parts labeled A, B and C	
--------------------------------------	--


- i) ATransverse process
- ii) *B....Vertebraterial canal/ Atlantal foramen*
- iii) C ...Lamina;
- c) What view of the bone is presented in photo P₂? (1 mk)

Dorsal view;

d) Identify one similarity and one difference between bones P and S (2 mks)

i) SimilarityLarge neural canal;Transverse process present;

ii)Difference	<u>P</u>	<u>s</u>
Cervical	Absent	Present;
Transverse proc	esses: Wide/ wing like	Branched;
Neural spine:	Reduced/ non-existent	Prominent;
Centrum:	None	Large;

