## SECTION A (40 MARKS) Answer all the questions in this section the spaces provided

| 1. | (a) The skin, respiratory surfaces, and alimentary canal are possible sites through organisms may gain entry to the human body. For each of these sites, describe the that prevent the entry of micro-organisms. |                |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|    | (a) The skin.                                                                                                                                                                                                    | (3 marks)      |
|    |                                                                                                                                                                                                                  |                |
|    |                                                                                                                                                                                                                  |                |
|    |                                                                                                                                                                                                                  | •••••          |
|    |                                                                                                                                                                                                                  | •••••          |
|    |                                                                                                                                                                                                                  | •••••          |
|    | (b) The respiratory system.                                                                                                                                                                                      | (3 marks)      |
|    |                                                                                                                                                                                                                  | •••••          |
|    |                                                                                                                                                                                                                  | ••••••         |
|    |                                                                                                                                                                                                                  | •••••          |
|    |                                                                                                                                                                                                                  |                |
|    |                                                                                                                                                                                                                  |                |
|    | (c) The alimentary canal.                                                                                                                                                                                        | (2 marks)      |
|    |                                                                                                                                                                                                                  |                |
|    |                                                                                                                                                                                                                  |                |
|    |                                                                                                                                                                                                                  | •••••          |
|    |                                                                                                                                                                                                                  |                |
| 2. | In an experiment to investigate the functioning of the mammalian kidney, sample                                                                                                                                  |                |
|    | micropipette from different regions. The diagram below shows the sample sites, l                                                                                                                                 | abeled 1 to 6. |
|    | Glomerulus  Renal artey Renal vein                                                                                                                                                                               |                |
|    | Each sample was analyzed to determine the concentration of glucose, protein, ure                                                                                                                                 | a and sodium   |

table below.

ions. The flow rate was also measured at each of the sample sites. The results are shown in the

| Samples sites within the kidney      | Concentration (g dm <sup>-3</sup> ) |                             |      |                                      | Flow rate |  |
|--------------------------------------|-------------------------------------|-----------------------------|------|--------------------------------------|-----------|--|
|                                      | Protein                             | Protein Glucose Sodium Urea |      | (cm <sup>3</sup> min <sup>-1</sup> ) |           |  |
|                                      |                                     |                             | ions |                                      |           |  |
| 1. Plasma in afferent arteriole      | 80                                  | 1.5                         | 34   | 0.3                                  | 600.0     |  |
| 2. Filtrate in Bowman's capsule      | 0                                   | 1.2                         | 34   | 0.3                                  | 125.0     |  |
| 3. End of proximal convoluted tubule | 0                                   | 0                           | 34   | 1.6                                  | 25.0      |  |
| 4. Bottom of loop of Henle           | 0                                   | 0                           | 70   | 1.8                                  | 1.5       |  |
| 5. Beginning of distal convoluted    | 0                                   | 0                           | 30   | 1.8                                  | 1.5       |  |
| tubule                               |                                     |                             |      |                                      |           |  |
| 6. Beginning of collecting duct      | 0                                   | 0                           | 2.2  | 2.2                                  | 1.3       |  |

Use the information in this table and your own understanding to answer the following questions.

(a) Explain the changes in the composition of proteins and glucose between the plasma in the afferent arteriole (sample site 1) and the end of the proximal convoluted tubule (sample site 3). (2 marks) • Protein • Glucose (b) Comment on the changes in sodium ion concentration in the different sample regions. (2 marks) (c) Explain the changes in urea concentration as it moves along the nephron. (d) Suggest an explanation for the fall in the flow rate as fluid moves from the plasma into and then along the nephron. (1mark)

|    | (e) The experiment was carried out at 37 °C. When the experiment was repeated a glucose concentration at the end of the proximal convoluted tubule was 0.15 g dm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|    | explanation for this result.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| 3. | (a) The bar charts show the percentages of a human population with each type of band the percentages of a cattle population with and without horns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | plood group                             |
|    | <sup>80</sup> 7 ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | without                                 |
|    | 60 - with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | horns                                   |
| ţ  | % population 40 group A group A group B group A group A group A group B group B group A group B group B group A group B group B group B group A group B group B group B group A group B group |                                         |
|    | 25   B AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|    | human blood groups cattl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e                                       |
|    | Which type of variation is shown in each population?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1mark)                                 |
|    | Human:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|    | Cattle:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
|    | (b) Albinism (lack of skin pigmentation) in humans is caused by two recessive allephenotypically normal (non-albino) couple have three children; the first two are nother third is an albino. In your answer, use "A" for the dominant allele and "a" for the allele.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on albino, the                          |
|    | (i) What are the genotypes of the parents?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1mark)                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • |
|    | (ii) Is there a possibility that their next child will be an albino? Explain your answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er (2 marks)                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    | (iii) The albino child eventually marries a non-albino whose father was an albino. What is the probability that their first child will be an albino? Show all working                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng. (4marks)                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • • • • • • • • • • • • • • • • • |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |

4. A potometer is a device for investigating the rate of transpiration. Prior to setting up, the potometer and the stem of a leafy shoot are immersed in water. Under water, the bottom centimetre of the stem is cut off and the cut end inserted into the plastic tubing. The apparatus is removed from the water, a bubble of air allowed to enter the open end of the capillary tube and that end then inserted into a beaker of water. The completed set-up for a simple potometer is shown below.



| transpiration?                                                                         | (1mark)      |
|----------------------------------------------------------------------------------------|--------------|
|                                                                                        |              |
| (b) Explain each of the following.                                                     |              |
| (i) Why it is necessary to cut the leafy shoot and fit it into the photometer under wa | ater (1mark) |
|                                                                                        |              |
| (ii) How the bubble of air is introduced into the capillary tube.                      | (1mark)      |
|                                                                                        |              |
| (iii) Why a syringe is attached.                                                       | (1mark)      |
|                                                                                        |              |
|                                                                                        | (1mark)      |
|                                                                                        |              |
|                                                                                        |              |

(c) The table below shows some results recorded using the apparatus.

| Time Distance travelled by bubble (mm) |            |                            | nm)                        |
|----------------------------------------|------------|----------------------------|----------------------------|
| (minutes) "Normal" room Covered with   |            | Covered with clear plastic | Covered with black plastic |
|                                        | conditions | bag                        | bag                        |
| 0                                      | 0          | 0                          | 0                          |
| 2                                      | 18         | 10                         | 4                          |
| 4                                      | 36         | 19                         | 8                          |
| 6                                      | 55         | 29                         | 11                         |
| 8                                      | 74         | 38                         | 15                         |
| 10                                     | 90         | 48                         | 18                         |

|    | (i) Account for the results shown in the table.                                                                                                                                                                                                                    | (2 marks)                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    | • • • • • • • • • • • • • • • • • • • • |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    | (**) In (**, **, **, **)                                                                                                                                                                                                                                           |                                         |
|    | (ii) In 'normal' room conditions, the distance moved by the bubble was 90 mm du minutes. The capillary tube has a cross sectional area of 0.8mm <sup>2</sup> . Calculate the rat in mm <sup>3</sup> minute <sup>-1</sup> . (Show your working in the space below.) |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
| 5. | <ul><li>(a) Describe how each of the following structures adapt a bony fish to locomotion</li><li>(i) Scales.</li></ul>                                                                                                                                            | in water.<br>(2 marks)                  |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    | (ii) Myotomes                                                                                                                                                                                                                                                      | (2 marks)                               |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    | (b) State <b>two</b> adaptations of the synovial joints in man.                                                                                                                                                                                                    | (4 marks)                               |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    | • • • • • • • • • • • • • • • • • • • • |
|    |                                                                                                                                                                                                                                                                    |                                         |
|    |                                                                                                                                                                                                                                                                    |                                         |

## **SECTION B (40 MARKS)**

## Answer question 6 (compulsory) and either question 7 or 8 in the spaces provided after question 8.

6. It was suspected that a pollution incident involving slurry had occurred in a local river. Oxygen content of the water in the river was measured, both upstream and downstream from the suspected slurry (raw sewage) leak. Samples were taken at seven points along the river and the results are shown in the graph below.

| Distance along the stream (m)   | 0   | 20  | 40  | 60  | 80  | 100 | 120 |
|---------------------------------|-----|-----|-----|-----|-----|-----|-----|
| Oxygen concentration (arbitrary | 7.0 | 7.0 | 1.6 | 2.0 | 3.4 | 5.0 | 7.0 |
| units)                          |     |     |     |     |     |     |     |

(a) Plot a graph of this data.

(7 marks)



| (b) From the graph determine:                                          |                                         |
|------------------------------------------------------------------------|-----------------------------------------|
| (i) the distance along the stream where the slurry leak occurred.      | (1mark)                                 |
|                                                                        |                                         |
|                                                                        |                                         |
| (ii) the least oxygen concentration and the distance when it occurred. | (2 marks)                               |
|                                                                        | • • • • • • • • • • • • • • • • • • • • |

| <ul> <li>(c) Account for the shape of the graph between:</li> <li>(i) 20m – 40m along the stream.</li> </ul>                                                                                                                              | marks)                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • •                    |
| (ii) $60m - 120m$ along the stream.                                                                                                                                                                                                       | marks)                                                     |
|                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • •                    |
|                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • •                    |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
| (d) Waterways can also be polluted by fertilizer run- off.                                                                                                                                                                                |                                                            |
| The effects of fertilizer run-off and pollution by slurry are different in some ways                                                                                                                                                      |                                                            |
| State and explain <b>two</b> of these differences. (3                                                                                                                                                                                     | marks)                                                     |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • • •                    |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
|                                                                                                                                                                                                                                           |                                                            |
| (a) Describe the adaptations of the essential parts of entomophillous flowers to polling                                                                                                                                                  | (6 marks)                                                  |
| <ul><li>(a) Describe the adaptations of the essential parts of entomophillous flowers to pollin</li><li>(b) Using a named example, describe the events from pollination to double fertilizat</li></ul>                                    | (6 marks)                                                  |
|                                                                                                                                                                                                                                           | (6 marks) ion.                                             |
| <ul><li>(b) Using a named example, describe the events from pollination to double fertilizat</li><li>(a) Describe how the mammalian eye is adapted for accommodation.</li></ul>                                                           | (6 marks)<br>ion.<br>(14 marks)<br>(6 marks)<br>(14 marks) |
| <ul><li>(b) Using a named example, describe the events from pollination to double fertilizat</li><li>(a) Describe how the mammalian eye is adapted for accommodation.</li><li>(b) Describe the mechanism of hearing in man.</li></ul>     | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |
| <ul><li>(b) Using a named example, describe the events from pollination to double fertilizat</li><li>(a) Describe how the mammalian eye is adapted for accommodation.</li><li>(b) Describe the mechanism of hearing in man.</li></ul>     | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |
| <ul><li>(b) Using a named example, describe the events from pollination to double fertilizat</li><li>(a) Describe how the mammalian eye is adapted for accommodation.</li><li>(b) Describe the mechanism of hearing in man.</li></ul>     | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |
| <ul> <li>(b) Using a named example, describe the events from pollination to double fertilizat</li> <li>(a) Describe how the mammalian eye is adapted for accommodation.</li> <li>(b) Describe the mechanism of hearing in man.</li> </ul> | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |
| (b) Using a named example, describe the events from pollination to double fertilizat  (a) Describe how the mammalian eye is adapted for accommodation.  (b) Describe the mechanism of hearing in man.                                     | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |
| (b) Using a named example, describe the events from pollination to double fertilizat  (a) Describe how the mammalian eye is adapted for accommodation.  (b) Describe the mechanism of hearing in man.                                     | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |
| (b) Using a named example, describe the events from pollination to double fertilizat  (a) Describe how the mammalian eye is adapted for accommodation.  (b) Describe the mechanism of hearing in man.                                     | (6 marks) ion. (14 marks) (6 marks) (14 marks)             |

7.

8.







This is the last printed page