

KAPSABET HIGH SCHOOL

(Kenya Certificate of Secondary Education)

Paper 1

INTERNAL MOCK EXAM PHYSICS (THEORY) Dec. 2020– 2 Hours

Instructions to candidates

- a) Write your Name, Index, Admission number and stream in the spaces provided above.
- b) Sign and write the examination date on the spaces provided above.
- c) This paper consists of Two sections; A and B
- d) Answer all the questions in sections A and B in the spaces provided
- e) All workings **must** be clearly shown.
- f) Non-programmable silent electronic calculators may be used.
- g) All your answers must be written in the spaces provided in the question paper.
- *h)* Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- i) Candidates must answer the questions in English.

Section	Question	Maximum Score	Candidate's Score
А	1-14	25	
	15	10	
	16	12	
В	17	10	
	18	11	
	19	12	
	Total Score	80	

For Examiners use only

Section A: (25 marks)

Answer ALL the questions in this section in the spaces provided.

1. A stone of mass 18.0g was immersed into a liquid and then removed. Figure 1 shows initial liquid level, A, when the stone was fully immersed and the final level, B, after the stone has been removed.

Figure 1

2.

Determine the density of the stone.

(3 marks)

A rubber balloon filled with carbon (IV) oxide is released from a high-flying aeroplane. State and explain what happens to its volume as it falls. (2 marks)

3. Two horizontal strings are attached to a block, resting on a frictionless surface, as shown in figure 2.

Figure 2

A force of 100N pulls on one string. The block does not move. Find the value of the force, F on the other string. (1 mark)

4. Explain what is observed when the temperature of water, which has pollen grains suspended it, is raised. (2 marks)

.....

5. Figure 3 shows a bimetallic strip which can be calibrated to measure temperature. It is put at a place with a temperature of 0°C, a mark for that temperature is made on the scale. It is then moved to a place with a temperature of 100°C. A new mark is made on scale.

Figure 3		Invar		—Brass	
Explain how	v the pointer is	made to move	from the 0°C m	ark to the 100°C mark	. (2 marks)
		•••••••••••••••••••••••••••••••••••••••			
A wood ben Explain this	ch and its meta observation.	ıl stand, feel ne	ither warm nor	cold when touched by	your bare hands (2 mark
		••••••			
•••••					
An oil drop Estimate the	of volume 6.0r e size of a mole	mm ³ forms a pa cule of the oil.	tch of diameter	35.0cm on a water su	rface. (2 marks)
Figure 4 sho	ows a plank of l	length 2m balar	nced by two we	ights of 10N and 40N	hang at the ends.
_	-	-	-	4 0.5m.	
10N]				40N
Figure 4					

3

ſ

9. Two identical empty bottles A and B are placed as shown in figure 5.

13. Figure 7(i) shows graphs of pressure against the reciprocal of volume for a mixed mass of gas at different temperatures T_1 and T_2 .

Sketch, in figure 7(ii) the pressure-volume graph for temperature T_1 . (1 mark)

14. Figure 8 shows load-extension graphs, **A** and **B**, for two springs, of the same length made of the same material.

.....

Section B: (55 marks)

Answer *ALL* the questions in this section in the spaces provided.

15. a) A small steel sphere falls through a liquid in a tall container. Figure 9 is the speed-time graph of the fall up to the point where the sphere reaches the bottom.

Figure 9

(i)	Explai	n the motion of the sphere.	(2 marks)
(ii)	(I)	Determine the speed of the sphere at point P.	(1 mark)
	(II)	Explain why this speed is called terminal velocity.	(1 mark)
(iii)	Estima	te the total distance moved by the sphere.	(3 marks)
•••••			

b) Figure 10 shows, a diagram of the sphere at point P.

Figure 10

Figure 11

The up	thrust, U and two other forces act on the sphere.		
(i)	Name the forces labelled A and B.	(2 marks)	
	A B		
(ii)	Write an expression relating the three forces.	(1 mark)	

16. a) A wheel fitted on axle is free to rotate on a horizontal axis as shown in figure 11. The radius of the wheel is 40cm and that of the axle is 8cm. The system has an efficiency of 90%.

(i)	Starting from the definition of velocity ratio, show that the velocity ratio of the				
	system is given by V.R = $\frac{R}{r}$.	(2 marks)			
(ii)	Determine the:				
	I. Velocity ratio of the system.	(2 marks)			
	II. Load W.	(2 marks)			

b) A bullet of mass 100g moving horizontally at a velocity of 250ms⁻¹ hits a wooden block of mass 19.9kg, suspended freely from a light inextensible string. The bullet becomes embedded in the block and the block rises through a vertical distance h, as shown in figure 12

Figure 12

Determine the:

17. a) In figure 13, the mass of m_2 is twice that of m_1 . The two masses are initially equidistant from the centre, O, of the turntable.

The angular velocity, ω of the turntable gradually increased from zero until the masses slide off the turntable.

	(i)	State with a reason which of the masses is likely to slide off the tur	ntable first. (2 marks)
	(ii)	Name the force which provides the centrinetal force on the masses	(1 mark)
	(11)	Name the force which provides the centripetal force on the masses.	(1 mark)
b)	A b	adv of mass 200g tigd to string mayor in a horizontal noth of radius 20	om. If it takes
0)	A 00 0.5s	to describe an arc length of 12cm.	cm. If it takes
	(i)	Identify the forces acting on the body.	(2 marks)
	(ii)	Determine the angular velocity of the body	(3 marks)
	(11)		
	(iii)	Determine the centripetal force.	(2 marks)
a)	(i)	State one similarity and one difference between boiling and evapor	ration. (2 marks)
		Similarity	
			Difference

18.

(ii) Figure 14 shows two identical beakers P and Q. Beaker P contains water at 0°C while Q contains water and ice cubes at 0°C.

- steam at 100°C. Determine the amount of heat required for this process. (Take specific capacity of ice = 2100Jkg⁻¹K⁻¹, specific heat capacity of water = 4200Jkg⁻¹K⁻¹, Latent heat of fusion of ice = 3.36x10⁵Jkg⁻¹, latent heat vaporization of steam = 2.26x10⁶Jkg⁻¹)
 - (3 marks)
- c) Figure 15 shows two containers X and Y of capacity 0.5m³ and 9.5m³ respectively. The two containers are connected a capillary tube of negligible volume. The tap is closed and container X is filled with a gas at pressure of 4.0x10⁵Pa and a temperature of

27°C.

b)

Figure 15

When the tap is opened, the temperature of gas falls to 17°C.

(i)	Give a reason for the drop in the temperature.	(1 mark)
(ii)	Assuming that the containers don't contract, deter	mine the new pressure of the gas (3 marks)
•••••		
•••••		

19. A solid cube of length 10cm is released on the surface of a liquid having the same density a) as the cube. (see figure 16)

On the axes provided below, sketch a graph showing how the upthrust of the solid cube varies with the depth. (2 marks)

c) A test tube containing some water and some air is inverted so that it floats inside a glass jar full of water. A tight diaphragm fixed at the mouth of the jar. See figure 17.

Figure 17

If the diaphragm is pressed downwards, the test tube moves to the bottom of the jar. Explain this observation. (3 marks)

THIS IS THE LAST PRINTED PAGE