Name: SCHEME Index No.	•••••
School: Class	•••••
Date:	
233/1	
CHEMISTRY THEORY	
PAPER 1	
TIME: 2 HOURS	a gg

KASSU JET EXAMINATIONS JANUARY 2021

Instructions to Candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above
- (c) Answer ALL the questions in the spaces provided in the question paper
- (d) KNEC Mathematical tables and electronic calculators may be used for calculations
- (e) All working MUST be clearly shown where necessary
- (f) This paper consists of 12 printed pages
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing
- (h) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Question	Maximum score	Candidate's score
1 – 29	80	

This paper consists of 12 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. Study the diagram below then use it to answer the questions that follow.

a) Draw the wooden splint at the end of the experiment. If it was slipped then removed. (1 mark)

Uncharred unburnt Zone

b) Explain the appearance of the wooden splint in (a) above.

(2 marks) Charmed Part is the hottest zone as a result of Complete of gaces while uncharred zone is as a tes

Combustion gases.

2. (a) The half-life of $\frac{210}{83}$ M is 7 days. Determine the mass of remaining if 100g decayed in 35 days.

R=(1) x unique = $\frac{1}{32}$ × 100

(b) The diagram below shows the radiations emitted by a radioactive sample. ? ? = 3.125.

(i) Identify radiation particles S and R.

(1 mark)

s Beta (B) Particles

 a) Starting with copper metal, describe how a solid sample of copper (II) carbonate can be prepared.

-Heat Copper Metal in air to obtain Copper (11) oxide.
-React CNO with dilute HNO3 to obtain CN(NO3), solution,
-Filter to obtain CN(NO3), as filter and unreacted CNO as recodine
-React CN(NO3), with NaCO3 to obtain CNCO & NaNO3.
-Filter to obtain CN(O3 as receding & NaNO3 as filtrate.
- Dry between the filter papers to get CnCO3.

4. The set-up below was used to obtain a sample of iron.

Write two equations for the reactions which occur in the combustion tube.

(2 marks)

5. Below are the bond dissociation energies of some elements.

Bond	Bond dissociation energy
C - C	343 kJ mol ⁻¹
C – H	414 kJ mol ⁻¹
H-H	435 kJ mol ⁻¹
C = C	612 kJ mol ⁻¹

Use this information to calculate the heat of reaction, for

$$C_2H_{4(g)} + H_{2(g)} \rightarrow C_2H_{6(g)}$$
 (
 $\triangle H = BBE + BFE$
 BBE
 $C = C = 612$
 $C - H = 414 \times 4 = 1656$

freaction for (3 marks),

$$C = C + H - H - D H - C - C - H$$
 RFE
 $C - C = 343$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$
 $C - H = 414 \times 6 = 2484$

6. Sulphur (IV) oxide is oxidized catalytically to sulphur (VI) oxide in the reaction.

$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)} \quad \Delta H = -197kJ$$

a) What information about the reaction is given by $\Delta H = -197 \text{kJ}$?

(1 mark)

Endotternic reaction

b) Name one catalyst that can be used in this reaction.

Vanadium (v) Oxide 7. Study the scheme below and answer the questions that follow.

a) Write the formula of the cation present in solution D.

(1 mark)

	b) What property of chlorine is shown in step 1.	(1 mark)
	Oxidising agent.	
	c) Write an equation for the reaction which occurred in step III. 2 (04) 3 (5)	(1 mark)
	8. 0.63g of lead powder were dissolved in excess nitric (V) acid to form lead	
	lead (II) nitrate was then reacted with sodium sulphate solution.	
	a) Write an ionic equation for the reaction between sodium sulphate solution solution.	(1 mark)
	Pb2+ + SO PLSO	
Móls	b) Determine the mass of the lead salt formed in the reaction in (a) above (P) $Pb = 0.63$ $Pb = 0.63$	b = 207, S = 32, O = 16 (2 marks)
M	1. 1: 1: 1 18 g pb 10 p 72 0 10030 q	
1	(an ± 0.403 or 1.803 = 0.92112 g 9. Use the cell representation below to answer the questions that follow.	
	$Cr_{(S)} / Cr_{(ag)}^{3+} / Fe_{(ag)}^{2+} / Fe_{(S)}$	٠.
	a) Write an equation for the cell reaction. $Fe^{2f} + Cx - Fe^{2f} + Cx + Fe^{2f}$ (a2)	(1 mark)
	b) If the emf of the cell is 0.30V and the E^0 value for Fe^{2+} / $Fe_{(S)}$ is -0.44 $Cr_{(S)}$ / $Cr^{3+}_{(aq)}$ $E^0 = E^0_{Red} - E^0_{Ox}$	
	$0.30V = -0.44 - E_{0xi}^{0}$	
	Ecylose = -0.44-0.30	
Oğ.	= - 0.74V	•
	5	*

10. An element Q has a relative atomic mass of 88. When a current of 0.5A was passed through the fused chloride of Q for 32 minutes and 10 seconds, 0.44g of Q were deposited at cathode. Determine the charge on the ion of Q. (1 Faraday = 96500 coulombs)

$$0.44 = 0.88$$

Z

All-ternahvely

 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$
 $0.447 = 0.88$

11. The table below gives three experiments on the reaction of excess sulphuric (VI) acid and 0.5g Zinc done under different conditions. In each case the volume of gas liberated was recorded at different time intervals.

Experimen	Form of Zinc	Sulphuric (VI) acid	
I	Powder	0.8M	
П	Powder	1.0M .	
Ш	Granules	0.8M	

On the axes below, draw and label the three curves that would be obtained from the results above.

(3 marks)

Volume of gas produced(cm³)

12. a)	Starting with red roses, descri	be how a	a solution	containi	ng the rec	d pigment		prepared? arks)
-	Crush roses Us	sing	Pestle	2 \$ (Marta		(2 111	arks)
_	Add Propanione	to	discon	re the	red	Pigm	ents.	
	Filter to obtain							trate.
	ow can the solution be shown t		7				(1 m	
A	ld drops of the	Pig	ment	to	diffe	at ty	pes of	· acids on
	ces. It will sh							
6	of same Colour	on k	alec.				14.	
13. The ta	able below provides data on the	e success	sive ionisa	tion ene	rgies of c	arbon.		
	Ionisation numbers	1st	2nd	3rd	4th	5th	6 th	
	Ionisation energy (kJ/mol)	1090	2350	4610	6220	37800	47300	-
]
	in why each ionisation energy					-	marks)	
	Her the removal							
Chan	se hold the x	emal	ning	0	ectr	ons	mif	aly
b) Write	an equation for the 5th ionisat	ion energ	gy of carb	on.			(1 m	ark)

14 Th - (·			on an annual of the	and Programme	11		
	igure below was set by a stude ide gas.	nt to inve	estigate th	e reactio	n betwee	en chlorin	e gas and	hydrogen
	Chlorine → =					\rightarrow		
	gas		316	?				
_3	4		ДР					
	Flas	sk —	$\sqrt{\parallel}$					
			/	1		rogen nide gas		
W (e	rite an equation for the reactio	n that to	ok place i	n the flag		nue gas		ork)
., ,,	1 9					レット	(1 m	
	$H \subseteq + cl$			سب ی				3)
	K 55 - 54 - 55 - 55 - 55 - 55 - 55 - 55							
	hat observation was made in the			0	-1		(1 m	ark)
	tellow defects of Suphur is formed.							
						8		

ut

18. (a) Give Bronsted and	h n fro	N. C.		(1mk)
(b) Differentiate betw - Strong.			acid that	(2mks)
9		More H		ted and in
19. When a hydrated sar recorded			all water was lost, t	
Mass of crucible Determine the er	le + hydrated salt + anhydrous salt npirical formula of	= 32.781 g the hydrated salt. (Ma CaSO ₄ =136,H ₂ O=	ss of anythan = 2.48: 18). Mass of water = 0.
Mass		Ca SO4 2· 485 136	0.33	
No of Nobel Mole rate 20. Describe a cher — Add tect to	nical test used to di	o 61827 stinguish butane from	om butene in the lal	cuso, Hz poratory. (2marks) Butene in Jefere
- Test-1	The Conta	outane o	loes not.	colorice bromine
Element	W	X	Y	Z
Atomic number	14	17	16	19
a) Name the type of the letter is the letter in the letter			ent. Give a reason f	Z reacts. (1mark) or your answer. (2mks)
/				

c) What precaution should be taken in carrying out the experime	ent? (1 mark)
Performed in fume cham	be open air.
Chlorine is Polsonous gas.	
15. A certain carbonate, QCO ₃ , reacts with dilute hydrochloric acid a below.	ccording to the equation given
$QCO_{3(S)} + 2HCl_{(aq)} \rightarrow QCl_{2(aq)} + CO_{2(g)} + H_2O_{(l)}$	
If 1g of the carbonate reacts completely with 20cm^3 of 1M hydrodatomic mass of Q.(C = 12.0, O=16.0)	AND THE RESERVE OF THE PERSON
1 Mole - D 1000cm 20cm	$R FM = \frac{\text{(3 marks)}}{\text{Mass}}$ $= \frac{1}{0.01} = 100$
20 X1 = 0:02 moles	0,'01
A SECTION OF THE SECT	100=Q+12+48
Mole ratio QCQ: Hel	100 = 2+60
Mores of QCO2 = 0:02 = 0:01 males	2=40-
16. When bismuth (III) chloride is added to water, a reaction occur	urs and a white precipitate forms as
shown below. $BiCl_{3(aq)} + H_2O_{(1)} \longrightarrow BiOCl_{(s)} + 2HCl_{(aq)}$	
What would be the effect on the amount of the precipitate formadded to the equilibrium mixture? Explain your answer.	med if sodium hydroxide solution is (2marks)
White Precipitate and Inapparer Intensity	ves; When Hydroxide is
Introduced it reacts wilt Ht from the Hal	hence system shift
17. (a) State the Gay Lussac's Law.	(1 mark)
When gase react, they do in	
comple whole number ratio to one and	
(b) 10cm^3 of a gaseous hydrocarbon, C_2H_X required 30cm^3 of oxsteam and 20cm^3 of carbon (IV) oxide were produced, what is the val	
(2 H +30 -> 2 CO - 20 CO)	(-2) 2 (9)
10 cm zoin	
224	•
	ž

18. (a) Give Bronsted and		1			(1mk)
In and	h 1 fro	he donor.			
	acid is	type of	acid than		
	into it loi that has			ted ac	d
19. When a hydrated sar recorded	mple of CaSO ₄ .xH ₂	O was heated until		^	ata was
Mass of crucible Determine the en	ble + hydrated salt	= 32.781 g fthe hydrated salt.	$CaSO_4=136, H_2O=$	ass of anhydr	$a_{s} = 2.485$ s syster = 0.33
RFM No. of mole		2.485 136 0.01827	0:33	3	:::SQ. HO
tect to	browine lbes.	water to	butane s	Bytene	in different
Nater 21. The table below give	While es the atomic numb	butane a	loes not	. Colorica	bromine
Element	W	X	Y	Z	
Atomic number	14	17	16	19	
a) Name the type o			ent. Give a reason f		
<u></u>			••••••		

22. In an electrochemical cell, the standard hydrogen electrode uses platinized platinum	n. State three
functions of the platinized platinum.	(3 marks)
- X of as an inext neetal collection to the Hill an system	
- Act as an inext metal collection to the Holl tan, system - provider a surface area on which dissociation of Ho	nolands take pla
serves as an electrical anductor to the external circu	út,
23. The flowchart below shows the scheme for extraction of Hydrogen from hydrolysis	of natural gas,
study it and answer the questions that follow.	e
Steam	
Step 1	
Natural gas	
step II	
Water gas	
Air Step III Separation chamber	2
H ₂ CO ₂	
*	
Purification chamber	
Step IV	
H_2 gas	
a) In step II water gas is formed. State one use of water gas.	(1marks)
b) When air is added in step III CO is converted to CO ₂ name one chemical sub	
used to separate CO ₂ from H ₂ in step IV	(1marks)
Calcium hydroxide	
c) State one large scale use of Hydrogen gas formed.	(1marks)

24. Aluminium is obtained from the ore with the formula Al₂O₃. 2H₂O. The ore is first heated and refined to obtain pure aluminium oxide (Al₂O₃). The oxide is then electrolysed to get Aluminium and oxygen gas using carbon anodes and carbon as cathode.

i) Give the common name of the ore from which aluminium is extracted. (1 m	nark)
	ark)
iii) The refined ore has to be dissolved in cryolite first before electrolysis. Why is this necess to swe the Melhig Rout from (1 n iv) Why are the carbon anodes replaced every now and then in the cell for electrolysing alumi oxide? (1 man they are eaten away ducto teacher with Oxygan industry for the carbon way ducto the carbon with Oxygan industry for the carbon way ductory.	nark) inium rk)
26. Nylon polymer has the structure below.	•••••
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
i) Determine the structures of the monomers. (2mks) HO-C-(\mathcal{C}_{1}) - \mathcal{C}_{2} 0 H NH2-(\mathcal{C}_{1}) - \mathcal{C}_{3} 1 NH2	
*	••••
ii) State the type of polymerization.	nk)
Condencation	
27. (a) Define the term solubility. (1 miles Maximum amount of solute that can solvete (1) of solvent out or particular temperature.	009
b) The following were the results obtained in an experiment to determine solubility of potassium	
nitrate at room temperature.	
Mass of evaporating dish = $14.32 g$	
Mass of evaporating dish + saturated solution = 35.70 g	
Mass of evaporating dish + salt (residue) = 18.60 g	

Calculate the solubility of potassium nitrate from the above results.	(2 marks)
Mass of solute (2 18-60 - 14.32 2 4.28)	
Many orwest - (35.70-18-60) = 17/g	
4.28g -> 17-1g gstheat 10g gstheat x 428g - 25.03g	100g g stre
. 17-1	
28. Describe a simple laboratory experiment that can be used to distinguish between sodium	n sulphide and
sodium carbonate.	2mks)
Keart with and seperately	
-test to gas produced song andipol KrCroz	
- Dulphide product gas that turns orange and fred K	CY, Oz green
white for Cantona to it versais ora 18	
pust ar other correct.	
29. (a) Give one reason some of the laboratory apparatus are made of ceramics.	
	1 mark)
Can withand strong heating	
	sulphuric (2 marks)
Doim' Measining Cylinder [Overing beaker	
1 Ducmi3 beaker	