Name	Index Number
School	. Stream
Candidate's Signature	Date

233/2 CHEMISTRY Paper 2 (THEORY) September, 2021 2 hours

MARKING SCHEME

BURAMU 2 JOINT EXAM, TERM ONE, 2021 CHEMISTRY PAPER 2

Instructions to Candidates

- a) Write your name, index number, school and stream in the space provided above.
- b) Sign and write the date of the exam in the spaces provided above.
- c) Answer all questions in the spaces provided in the question paper.
- d) All working **must** be shown clearly where necessary.
- e) KNEC Mathematical tables and silent electronic calculators may be used
- f) Answer the questions in English.

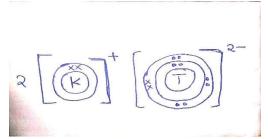
For Examiner's use only

Question	Maximum Score	Candidate's Score
1	12	
2	14	
3	10	
4	10	
5	10	
6	14	
7	10	
Total Score	80	

1. The grid below shows part of the periodic table. Use it to answer the questions that follow. The letters are not actual symbols of the elements.

						P
K			S	T		
	M	R			N	Q
L						

- i. What is the name given to the elements that lie within the shaded region? [1mk] *Transition metals*
- ii. Compare the atomic radius of:


[2mks]

- I. K to that of L

 The atomic radius of K is smaller than that of L//atomic radius of L is larger than that of K
- II. R to that of N

 Atomic radius of R is larger than that of N.
- iii. The stable ion of an element M is M^{2+} . If the electron configuration of this ion is 2.8, place M on the grid above. [1mk]
- iv. In which chemical family does M belong? [1mk]

 Alkaline earth metals
- v. Explain why the melting point of N is higher than that of Q. [2mk] N exist as a diatomic molecule while Q is monoatomic. The van der Waals forces between N molecules are thus stronger than those between Q atoms.
- vi. Using dots (•) and crosses (x) to represent electrons, draw a diagram to illustrate the bonding in the compound formed between K and T. [2mks]

- vii. The chloride of R was dissolved in water and a blue litmus paper dropped in the resulting solution. State and explain the observation made. [2mks] The blue litmus paper turns red. The chloride of R gets hydrolyzed in water to form an acidic solution
- viii. Give one use of element P.

[1mk]

• Used by deep sea divers and mountain climbers when mixed with oxygen

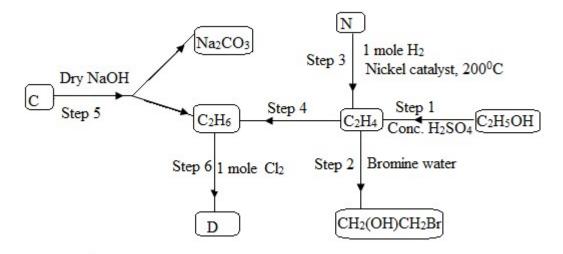
- Can be used instead of hydrogen in weather balloons for meteorological research
- Used in thermometers for measurement of very low temperatures
- 2. a) A hydrocarbon **D** has an empirical formula CH₂ and a molecular mass of 56.
 - i. Determine the molecular formula of the hydrocarbon. [2mks]

$$(12+2)n = 56$$

$$14n = 56$$

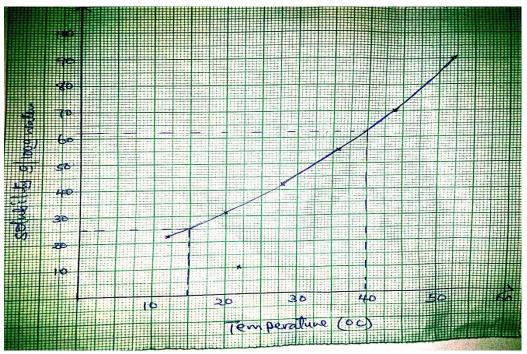
$$n=4$$

$$(CH_2)4 = C_4H_8$$


ii. Draw and name two possible structures of the hydrocarbon. [4mks]

But-1-ene

But-2-ene


2-methylpropene

b) Study the flow chart below and answer the questions that follow.

3

	i.	Name substance: I. C	[2mks]
		Sodium propanoate	
		II. N Ethyne	
	ii.	Draw the open structural formula of D.	[1mk]
		Н Н H-C-C-C1 Н Н	
	iii.	What is the role of concentrated sulphuric (VI) acid in step 1? <i>It dehydrates ethanol</i>	[1mk]
	iv.	Name the reagents that can be used to prepare N in the laboratory. Calcium carbide and water	[1mk]
	v.	State the observation made in step 2. Bromine water is decolorized	[1mk]
		Or	
		Bromine water changes from red/orange/yellow to colorless	
	vi.	How was the sodium hydroxide (NaOH) in step 5 kept dry?	[1mk]
		By mixing it with calcium oxide	
	vii.	Under what condition would the reaction in step 6 NOT take place?	[1mk
		In darkness/ in the absence of UV light	
3.	a) At 2	25^{0} C, 50 g of potassium nitrate were added to 100 g of water to make a satur	rated
	solutio	on. What is meant by a saturated solution?	[1mk]
	a solu	tion in which no more solute can dissolve at a given temperature	
		table below gives the solubilities of potassium nitrate at different temperat	ures.
		perature (⁰ C) 12 20 28 36 44 52	
	Solul	bility g/100g of water 22 31 42 55 70 90	
i.		ot a graph of the solubility of potassium nitrate (vertical axis) against temp mks	erature.
		• Correct labelling of axes1/2mks	
		• Scale	
		• Plotting1mk	
		• Smooth curve	

- Using the graph: ii.
 - Determine the solubility of potassium nitrate at 15°C. [1mk]

 - Correct reading of solubility from the graph.....1/2mks 25g/100gof water
 - II. Determine the mass of potassium nitrate that remained undissolved given that 80g of potassium nitrate were added to 100 cm^3 of water and warmed to 40°C . (density of water is 1g/cm³) [2mks] Solubility at $40^{\circ}C = 62g/100gwater....1mk$ *Mass undissolved* = 80-62 = 18g....1mk
- Determine the molar concentration of potassium nitrate at 15°C. (K=39.0, N=14.0, iii. O=16.0). [3mks]

Molar mass of $KNO_3 = 101$

Moles of KNO₃ in $100cm^3$ of solution = $\frac{25}{101}$ = 0.2475 Molar concentration = $\frac{0.2475 \times 1000}{100}$ = 2.475M

4. a) Hydrogen chloride gas is commercially obtained from the reaction between hydrogen and chlorine gas. State the sources of hydrogen and chlorine gas in this process. [2mks] Hydrogen: electrolysis of brine, cracking of long chain alkanes

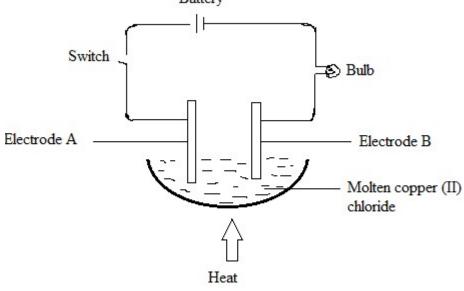
Chlorine: electrolysis of molten sodium chloride or brine

b) Explain why small amounts of hydrogen gas are burnt in excess chlorine during commercial preparation of hydrogen chloride gas. [1mk]

To prevent an explosion

c) Write an equation for the reaction between chlorine and hydrogen gas. [1mk]

 $Cl_{2(g)} + H_{2(g)} \rightarrow 2HCl_{(g)}$


- d) hydrogen chloride gas reacts with lead (II) ions in solution according to the equation: $2HCl_{(g)} + Pb^{2+}_{(aq)} \rightarrow PbCl_{2(s)} + 2H^{+}_{(aq)}$
- 2.4 litres of hydrogen were carefully bubbled through 50 cm³ of 1.2 M solution of lead (II) ions at room temperature.
- i. Name a suitable salt that was used to prepare lead (II) ions. [1mk]

 Lead (II) nitrate
- ii. Calculate:
 - I. The number of moles of lead (II) ions that reacted. [2mks] Moles of HCl = 2.4/24 = 0.1Moles of $Pb^{2+} = 0.1/2 = 0.05$
 - II. The mass in grams of lead (II) chloride formed. [2mks] (one mole of a gas occupies 24 dm³ at r.t.p, Cl = 35.5, Pb =207) Molar mass of $PbCl_2 = (207 +71) = 278g/mol$ Moles of $PbCl_2 = 0.05$ Mass = $278 \times 0.05 = 13.9g$
- iii. State one use of hydrogen chloride.

[1mk]

- Manufacture of hydrochloric acid
- Manufacture of pvc

 The set_up below was used to investigate the
- 5. The set-up below was used to investigate the effect of an electric current on molten copper (II) chloride. Use it to answer the questions that follow.

i. Identify the anode and cathode.

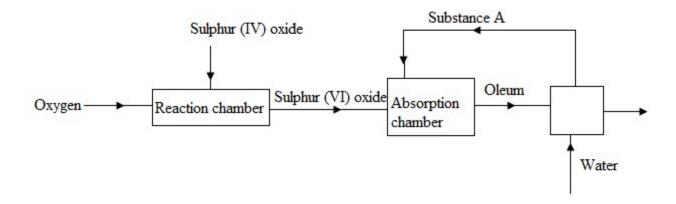
[2mks]

A-anode

B- cathode

- ii. State three observations that were made in the above set-up when the switch was closed. [3mks]
 - The bulb lights
 - *A red-brown solid deposit on electrode B(cathode)*

- Green-yellow gas at electrode A(anode)
- iii. Write an equation for the reaction that occurred at electrode A. [1mk] $2Cl_{(g)} \rightarrow Cl_{2(g)} + 2e^{-}$
- iv. What would happen if the source of heat was withdrawn in the above set-up?


 Explain. [2mks]

 The bulb becomes dim then goes off. Copper (II) chloride solidifies and hence won't allow an electric current to pass through
- v. Give two application of electrolysis.

[2mk]

- Electroplating of metals to prevent corrosion and also make them attractive
- Extraction of reactive metals such as sodium and aluminium
- Purification of metals like copper
- Manufacture of pure chemicals such as hydrogen, chlorine and sodium hydroxide
- 6.
- i. Sulphur exhibits allotropy. What is meant by the term allotropy? [1mk] Existence of an element in more than one form but in the same physical state
- ii. Name one non-crystalline allotrope of Sulphur. [1mk]

 Plastic Sulphur, colloidal Sulphur, powdery Sulphur
- iii. Extraction of Sulphur is done by the Frasch process. State the role of superheated water in the Frasch process. [1mk]To melt Sulphur
- iv. The flow chart below shows some of the processes involved in the large-scale production of sulphuric (VI) acid. Use it to answer the questions that follow.

- I. Describe how oxygen is obtained from air on large scale. [3mks] Air is first passed through concentrated sodium hydroxide to remove carbon (IV) oxide. It is then cooled to -25°C to remove water. Through repeated compression and expansion, air is cooled to a liquid at -200°C. through fractional distillation, oxygen is separated from nitrogen and argon.
- II. Name substance A.

 Concentrated sulphuric (VI) acid

[1mk]

- III. Write an equation for the reaction that takes place in the absorption chamber. [1mk] $H_2SO_{4(l)} + SO_{3(g)} \rightarrow H_2S_2O_{7(l)}$
- IV. Give two reasons why vanadium (V) oxide is commonly used as a catalyst in the above process. [2 mks]

It is cheaper, not easily poisoned/has a longer lifespan

v. A form three student carried out the following tests using different concentrations of sulphuric (VI) acid.

Test 1

Copper turnings were added to 5 cm³ of 18M sulphuric (VI) acid in a boiling tube and the mixture warmed.

Test 2

Copper turnings were added to 5 cm³ of 0.1M sulphuric (VI) acid in a boiling tube and the mixture warmed.

State and explain the observations made in each test.

Test 1

Observation [1mk]

Effervescence/ bubbles

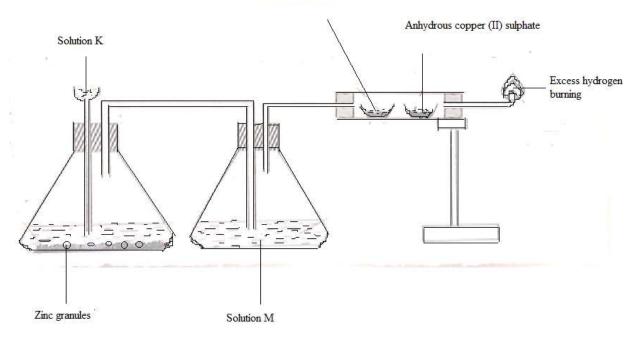
Blue solution

Explanation [1mk]

18M sulphuric (VI) acid is a strong oxidizing agent and oxidises copper to copper (II) sulphate which is blue. Sulphur (IV) oxide gas is given out.

Test 2

Observation [1mk]


No effervescence/bubbles

Explanation [1mk]

0.1M sulphuric (VI) acid does not react with copper

7. The set-up below was used to prepare hydrogen and investigate one of its properties. Study it and answer the questions that follow.

- a. Identify:
 - i. Solution K [1mk]

Dilute hydrochloric acid/dilute sulphuric (VI) acid

ii. Solution M [1mk]

Concentrated sulphuric (VI) acid

- b. State two properties of solution M that make it suitable to perform the role it does in the above set-up. [2mks]
 - It absorbs moisture
 - Does not react with hydrogen gas
- c. Write an equation for the reaction that occurs in the conical flask.

$$Zn_{(s)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}$$

$$Zn_{(s)} + H_2SO_{4(aq)} \rightarrow ZnSO_{4(aq)} + H_{2(g)}$$

- d. What would be observed in the combustion tube at the end of the experiment? [2mks]
 - Red-brown solid

[1mk]

- Blue solid
- e. What type of reaction is undergone by hydrogen in the above set-up? Explain [2mks] *Oxidation. Oxygen is added to it to form water*
- f. Other than industrial manufacture of hydrochloric acid, give any other industrial use of hydrogen. [1mk]
 - Manufacture of ammonia
 - Hydrogenation