232/2

Paper 2

PHYSICS - (Theory)

Dec. 2022 - 2 hours

Name	Index Number
Candidate's Signature	Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) This paper consists of two Sections; A and B.
- (d) Answer all the questions in Sections A and B in the spaces provided.
- (e) All working must be clearly shown in the spaces provided in this booklet.
- (f) Non-programmable silent electronic calculators may be used.
- (g) This paper consists of 16 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Section	Questions	Maximum Score	Candidate's Score
A	1-13	25	
	14	09	
	15	09	
Contract of the Contract of th	17	12	
	18 770	7 2542°	
	Total Score	80	

SECTION A (25 marks)

Answer all the questions in this section in the spaces provided.

1. Figure 1 shows three cardboards A, B and C with holes placed between a source of light and an observer.

Figure 1

	rved.	(2 mai
•••••••		
State how a polythen	e rod acquires a negative charge when it is r	ubbed by a piece of cloth. (1 ma
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	

Figure 2 shows an incomplete circuit.

Figure 2

Complete the circuit by inserting a cell so that the current I flows in the direction shown when (1 mark) the switch S is closed.

5.	State the basic law of magnetism.	(1 mark
		••••••••••••

Figure 3 shows a vertical object O placed in front of a concave mirror whose principal focus is at F.

Figure 3

Draw a ray diagram to show how the image is formed.

(3 marks)

7.		two properties of soft iron that makes it suitable for use as the core of the electronelectric bell.	magnet (2 marks)
	••••••		
	•••••		
8.	(a)	State one reason why sound travels faster at sea level than on high mountains.	(1 mark)
	(b)	State one condition necessary for two progressive waves to form a standing way	ve. (1 mark)
			••••••
9.	time,	students stand 300 m from a wall. One bangs two pieces of wood together and at the other starts a stop watch. They hear an echo after 1.8 seconds. Determine the l in air.	
	••••••	•••••••••••••••••••••••••••••••••••••••	••••••
	••••••	•••••••••••••••••••••••••••••••••••••••	•••••
	•••••		•••••
		••••••••••••••••••••	

- 10. During an experiment to investigate the relationship between the angle of incidence *i*, and angle of refraction *r* for a ray of light travelling from air to glass, the values of sin *i* and sin *r* were determined.
 - (a) On the axes provided, sketch the graph of sin *i* against sin *r* for the values that were obtained. (1 mark)

- (b) State how the refractive index of the glass can be obtained from the graph. (1 mark)
- 11. Figure 4 shows a circuit consisting of two resistors of 4Ω and 8Ω , a cell and voltmeters V_1 and V_2 .

Figure 4

It is observed that voltmeter V₂ shows a higher reading than V₁. Explain this observation.

(2 marks)

12.	A heating element is rated 3 kW, 240 V. Determine the resistance of the element.	(3 marks)
		•••••••••••••••••••••••••••••••••••••••
		•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••	••••••••
13.	State two characteristics of images formed by diverging lenses.	(2 marks)
	•••••••••••••••••••••••••••••••••••••••	
	***************************************	••••••

SECTION B (55 marks)

Answer all the questions in this section in the spaces provided.

14.	(a)		Lenz's law of electromagnetic induction.	(1 mark)
		••••••		•••••••••••••••••••••••••••••••••••••••
	(b)	Figu	re 5 shows a magnet held near a stationery solenoid.	*******
			Solenoid Magnet N S	
			Galvanometer Figure 5	
		State	what will be observed on the galvanometer when the:	
		(i)	north pole end is pushed into the solenoid	(1 mark)
			•••••••••••••••••••••••••••••••••••••••	••••••••
			•••••••••••••••••••••••••••••••••••••••	•••••••
		(ii)	magnet is held stationary inside the solenoid	(1 mark)
			•••••••••••••••••••••••••••••••••••••••	••••••

	(iii)	north pole end is pulled out of the solenoid	(1 mark)
			••••••
		•••••••••••••••••••••••••••••••••••••••	••••••
(c)	Expla solend	in what would be observed if the North pole of the magnet is now moved oid at a higher speed.	into the (3 marks)
	••••••		••••••
	••••••	······································	••••••
	••••••		••••••
	••••••	•••••••••••••••••••••••••••••••••••••••	••••••
	••••••	•••••••••••••••••••••••••••••••••••••••	••••••
(d)	State	two causes of energy losses in a transformer.	(2 marks)
			•••••••
	••••••		••••••

1 1/ 12 17 1 1 1

(b) Figure 6 shows a circuit consisting of switches S_1 , S_2 , S_3 and three identical lamps L_1 , L_2 and L_3 connected to the mains supply through a fuse.

Figure 6

(i)	Identify two faults in the circuit.	(2 marks)
		•••••••••••••••••••••••••••••••••••••••
	······································	•••••••••••••••••••••••••••••••••••••••
(ii)	State the reasons for the answers in 15(b)(i).	(2 marks)
		• • • • • • • • • • • • • • • • • • • •

(iii)	Describe how the brightness of lamps L_1 , L_2 and L_3 compare when the s S_1 and S_2 are closed.	(2 marks)
		•••••••
	······································	•••••••
		•••••••
		•••••••
		••••••
(iv)	Explain the answer in 15(b)(iii).	(2 marks)
	······································	•••••••
	•••••••••••••••••••••••••••••••••••••••	•••••••
	•••••••••••••••••••••••••••••••••••••••	•••••••
		••••••••••••••••••••••••••••••••••••••
		••••••

16. (a) Figure 7 shows a circuit consisting of a cell in series with a galvanometer and two metal plates A and B.

Figure 7

	(1)	It is observed that when a beam of UV radiation falls on plate B, the galvanometer deflects. Explain this observation.	(3 marks)
		***************************************	•••••••
		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
		•••••••••••••••••••••••••••••••••••••••	•••••••
		•••••••••••••••••••••••••••••••••••••••	••••••
	(ii)	Explain what would be observed on the galvanometer when a more into of UV radiation is used.	ense beam (2 marks)
			•••••••
		•••••••••••••••••••••••••••••••••••••••	•••••••
		•••••••••••••••••••••••••••••••••••••••	•••••••
		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
			••••••••
(b)	(i)	State with a reason how the intensity of an X-ray beam can be increase	ed in an
		X-ray tube.	(2 marks)
		•••••••••••••••••••••••••••••••••••••••	••••••
		•••••••••••••••••••••••••••••••••••••••	••••••
			••••••
			••••••

232/2

(ii) Figure 8 shows the trace of an AC signal on the screen of a Cathode Ray Oscilloscope (CRO).

Figure 8

Given that the time base setting is 8.5 milliseconds per cm. Determine the:

	I.	wavelength of the AC signal	(1 mark
			•••••••••••••••••••••••••••••••••••••••
3*	II.	frequency of the AC signal	(3 marks)
			•••••••
		•••••••••••••••••••••••••••••••••••••••	•••••••
(iii)	State	the functions of the following parts of a Cathode Ray Oscilloscope	e :
	I.	The grid	(1 mark)
		•••••••••••••••••••••••••••••••••••••••	•••••••
		•••••••••••••••••••••••••••••••••••••••	••••••
	II.	The filament	(1 mark)
			•••••
			•••••

(b) Figure 9 shows a decay curve of a radioactive element.

Figure 9

From the graph determine:

(i)	the half life of the element	(1 mark)
(ii)	the number of half lives it will have undergone when the count is 12.5	
		• • • • • • • • • • • • • • • • • • • •

(c)	(i)	State the effect of doping on a semiconductor. (1 mark)
	(ii)	Explain how doping produces an n-type semiconductor from a pure semiconductor. (3 marks)
	(iii)	Figure 10 shows a circuit consisting of two galvanometers G_1 and G_2 , two switches S_1 and S_2 , a cell and two diodes D_1 and D_2 .
		Figure 10 Explain what is observed when S_1 and S_2 are closed. (4 marks)
		(4 marks)

18.	(a)	Explain the effect on resistance of a diode when the forward bias voltage is increased. (2 marks)
		••••••
		•••••••••••••••••••••••••••••••••••••••

(b) **Figure 11** shows a circuit consisting of a 12 V battery, 1.5 kΩ resistor, a Light Dependent Resistor (LDR) and a lamp of negligible resistance. The circuit can be used as a light detector.

Figure 11

(i)	Explain what would be observed if the lighting conditions are change darkness to bright light.	d from total (3 marks)
		••••••
	······································	•••••••
	,	••••••

V,
S
0

	(ii)	If the resistance of the LDR in bright light is $1 \times 10^3 \Omega$, determine the difference across the $1.5 \mathrm{k}\Omega$ resistor.	potential (3 marks)
			•••••••
			••••••
			•••••••
		•••••••••••••••••••••••••••••••••••••••	••••••
(c)	State t	the function of a capacitor in rectification of an alternating voltage.	(1 mark)
	••••••		••••••
	••••••	•••••••••••••••••••••••••••••••••••••••	(
	••••••	······································	•••••••
	••••••	······································	•••••••
(d)		2.5 μF 10 μF 12 Shows two capacitors of 2.5 μF and 10 μF in series with a 12 V batter	y .
		Figure 12	
	Detern	nine the total charge stored by the conscitors	(3 marks)
	••••••		
	•••••••		••••••
	•••••••		•••••

THIS IS THE LAST PRINTED PAGE.