

MARANDA HIGH SCHOOL

Kenya Certificate of Secondary Education MOCK EXAMINATIONS 2021

232/3

PHYSICS

Paper 3

December 2021 – TIME 2¹₂ Hours

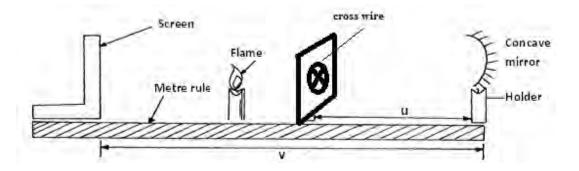
Name:		Adm No:	•••••
Class: .	Candidate's Signature:	Date:	/12/2021.

INSTRUCTIONS TO CANDIDATES:

- (a) Answer ALL the questions in spaces provided in the question paper.
- (b) You are supposed to spend the first 15 minutes of 2½ hours allowed for this paper reading the whole paper carefully before commencing the work.
- (c) Marks are given for clear record of the observations actually made, their suitability, accuracy and the use made of them.
- (d) Candidates are advised to record their observations as soon as they are made.
- (e) Non-programmable silent electronic calculators and KNEC Mathematical table may be used.
- (f)All questions must be answered in English

FOR EXAMINER'S USE ONLY:

Question	Maximum Score	Candidates score
	20	
1		
2	20	
Total	40	


QUESTION 1

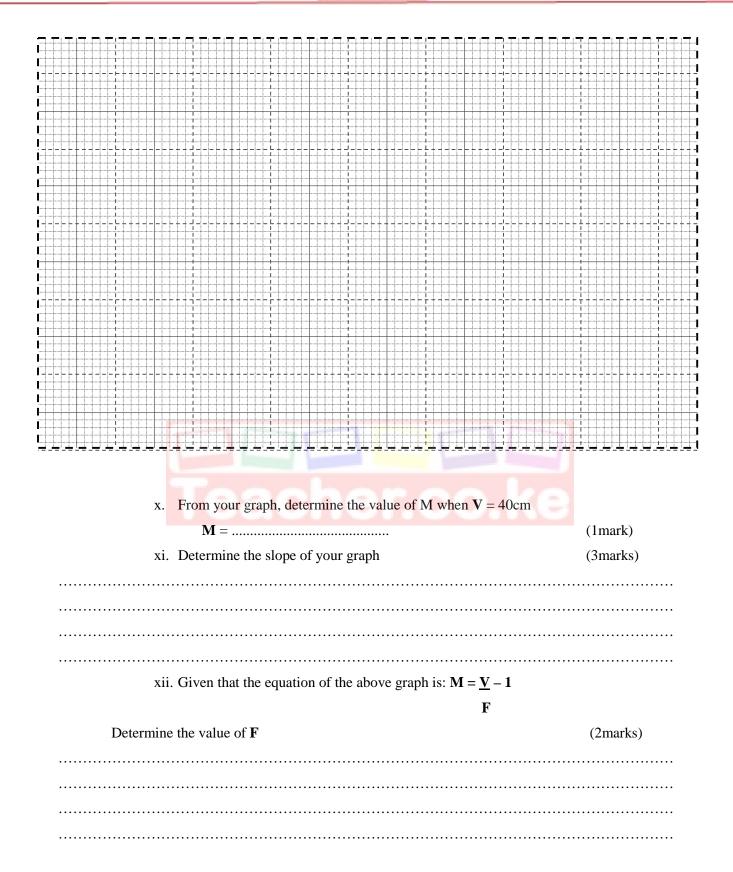
1. (a) You are provided by the following:-

One concave mirror
One mirror holder
White screen
Metre rule
Some plasticine
One candle

(b) Procedure:-

- ii. Set the apparatus as shown in the diagram below
- iii. Place the mirror from one end of the metre rule as shown on the diagram
- iv. Place the lit candle in front of the mirror at a distance $\mathbf{u} = 22.0 \text{cm}$ (Note: The cross wire becomes the object)
- v. Place the screen from the other end as shown then vary the screen to and fro until a
 sharp inverted image of the candle flame is obtained on it.(Note: you can displace the
 screen alittle so that reflected rays from the mirror are not blocked by the object)
- vi. Now measure distance V, between the mirror and the screen
- vii. Repeat the procedure in (v) above with distance u equal to 26cm, 30cm, 34cm, 38cm and 42cm; each time recording the corresponding distance V in the table below:

Ucm	22	26	39	34	38	42
Vcm						
M						


viii. Calculate the value of magnification **M** and compete the table above

ix. Plot a graph of **M** on vertical axis against **V** (5marks)

(8marks)

QUESTION 2

This question has two parts A and B. Answer all the parts

PART A

You are provided with the following:

A metre rule

Two identical 100g masses (labelled A and B)

Liquid L in 250ml beaker, $\frac{3}{4}$ full.

Three pieces of thread, each 30cm long.

Stand with clamps

Tissue paper.

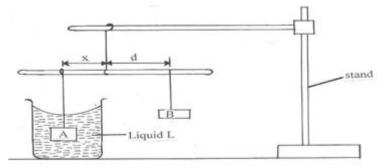
Vernier calipers

Proceed as follows:

a.	Take one 100g mas	s and measure th	e diameter d	and height h	using the V	Vernier calipers

d=	.m	
h=	m	(1mark)

o. Determine th <mark>e volume V</mark> given	that $V = \pi (\frac{a}{2})^2 h$
---	----------------------------------


V	m ³	(1mark)
		` ′

c. Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizontally. Record the position of the centre of gravity. G.

$G = \underline{\hspace{1cm}}$ cm	(1mark
-----------------------------------	--------

NOTE: The metre rule should remain suspended at this point throughout the experiment.

d. Set up the apparatus as shown in the figure below;

Suspend the mass A at a distance x = 30cm and completely immerse it in liquid L without touching the sides of the beaker.

 Hang mass B and adjust its position such that the rule is balanced and measure the distance d cm. Tabulate your results in table 1 below;

x (cm)	30	35	40
d (cm)			
<u>d</u>			
x			

(2marks)

e. Determine the weight F of one of the masses A or B in air. Given that

$$g = 10N/Kg$$
 and A =B

Weight F in air = (1 mark)

f. Using the principle of moments, determine the apparent weight P of A when completely immersed in liquid L.

Apparent weight P =

(2monto)

......(2marks)

g. Find the upthrust U on A when completely immersed. (1marks)

Upthrust; U =.....

h. Determine the density of liquid L, given that; (1mark)

$$\rho = \frac{Un}{V}$$
 where $n = 0.1Kg/N$

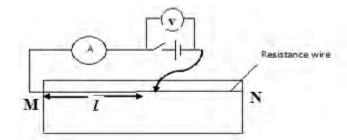
PART B

You are provided with the following apparatus:

Resistance wire fitted on a millimeter scale labeled MN

Switch

Voltmeter


Ammeter

One dry cells in a cell holder

Six connecting wires

Micrometer screw gauge

i. Set –up the apparatus as shown in the Figure 2 below;

ii. Remove the crocodile clip from the resistance wire MN and close the switch. Record the voltmeter reading V₀.

$$\mathbf{V_0} = \dots$$
 (1mark)

- iii. Attach the Jockey to the resistance wire such that l = 50cm
- iv. Record the voltmeter and ammeter readings as V_1 and I_1 respectively

$$\mathbf{V}_1 = \dots$$
 (1mark)

$$\mathbf{I}_1 = \dots (1 \text{mark})$$

v. Determine the value of \emptyset given that $\emptyset = \frac{V1}{I_1}$ (1mark)

vi. Use the equation below to determine the value of k, where $m = 2.549\Omega$ (2marks)

$$\frac{V_1}{V_0 - V_1} = \frac{m\emptyset}{5} + k$$

vii. Measure the diameter \mathbf{d} of the of the wire on the millimeter scale using the micrometer screw gauge

viii. Determine the resistivity ρ of the wire used in this experiment given that

$$\emptyset = \frac{\rho l}{A} \tag{2marks}$$

