

MARANDA HIGH SCHOOL

Kenya Certificate of Secondary Education MOCK EXAMINATIONS 2021

233/1

CHEMISTRY Paper 1 DECEMBER 2021 – TIME: 2Hours

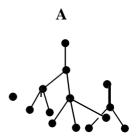
Name:	.Adm No:
Class:Candidate's Signature:	Date:/12/2021

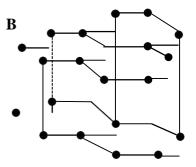
Instructions to candidates

- (a) Write your name, admission number and sign in the spaces provided above.
- (b) Sign and write the date of the examination in the spaces provided
- (c) Answer **ALL** the questions in the spaces provided.
- (d) All working MUST be clearly shown.
- (e) KNEC mathematical tables and silent non programmable electronic calculators may be used.
- (f) This paper consists of 13 printed pages
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

FOR EXAMINER'S USE ONLY.

Question	Maximum score	Candidate's score
1 – 27	80	

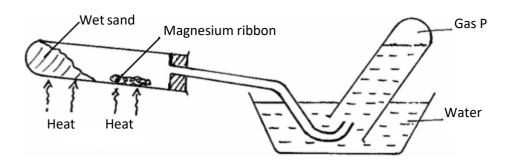

1.	(a) Give two reasons why luminous flame is not used for heating purposes in the	e laboratory.
		(2marks)
	(b) Explain how the hotness of a Bunsen burner flame can be increased.	(1mark)
2.	The scheme below shows the energy changes that are involved between ice, was Study it and answer the questions that follow	nter and steam.
	$H_2O_{(S)}$ ΔH_4 $H_2O_{(t)}$ AH_3 $H_2O_{(g)}$	
	(a) What name is given to the process represented by energy change ΔH_4 ?	(1 mark)
	(b) What is the sign of ΔH_3 ? Give a reason	(2 marks)
3.	Samples of urine from three participants U, V and W at an international sport m spotted onto chromatography paper alongside two from illegal drugs T1 and T2 chromatogramwas run using methanol. The figure below shows the chromatogram	. A
	• • •	
	Solvent front	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(a) Identify the athlete who had used an illegal drug.	(1mark)



	(b) Which drug is more soluble in methanol? (1mark)
	(c) Identify a mistake made on the chromatogram. (1mark)
4.	The grid below is part of the periodic table. Study it and answer the questions that follow. Theletters are not actual symbols of elements.
	A D E H I B C M F G J
	a) What is the name given to the chemical family of element C ? (1mark)
	b) Would element B reacts with J ? Explain. (1mark)
	c) Compare the melting points of B and M . (1mark)
5.	The following diagrams show the structure of two allotropes of carbon. Study them and

answerthe questions that follow.

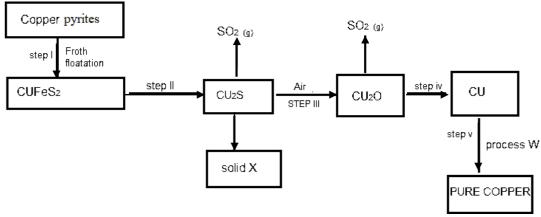
A	(1 mark)
A:	
B:	
(b) Give one use of A .	(½ mark)
(c) Which allotrope conducts electricity? Explain.	(1½ marks)
(a) A few drops of freshly prepared Iron (II) Sulphate solution were a Potassium nitrate solution in a test-tube. Concentrated sulphuric (VI carefully added to the mixture. State the observations that were made	() acid was then le. (1mark)
(b) Write an equation for the reaction that occurs when solid potassium heated.	nitrate is strongly
(b) Write an equation for the reaction that occurs when solid potassium	
(b) Write an equation for the reaction that occurs when solid potassium	nitrate is strongly
(b) Write an equation for the reaction that occurs when solid potassium	nitrate is strongly
(b) Write an equation for the reaction that occurs when solid potassium heated.	nitrate is strongly (1mark)
(b) Write an equation for the reaction that occurs when solid potassium heated.	nitrate is strongly (1mark)



7. (a) Using electrons in the outermost energy level, draw the dot (•) and cross (X) diagrams to epresent bonding in:

(i) C_2H_6	(1mark)
(ii) Magnesium nitride	(1mark)
(b) The formula of a complex ion is $\left[Cu(NH_3)_4\right]^{2+1}$ Na	ame the type of bond that is likely to
exist between copper and ammonia in the complex	

8. The set-up below can be used to study the reaction of magnesium and steam



	(a) Name gas P .	(1 mark)
	(b) Explain the observation made when copper is used instead of magnesium in	(1 mark)
	(c) Write the equation for the reaction between magnesium and steam.	(1mark)
9.	280cm^3 of nitrogen gas diffuse through a porous plug in 70 seconds. How long of carbon (IV) oxide gas to diffuse through the same porous plug? (C = 12, O =	
10	State two factors that accelerate rusting.	(2 marks)
11.	(a) Define the term ionization energy.	(1mark)
	(b) State and explain a factor that determine the value of ionization energy of a	given element. (2marks)

12. Study the flow chart below and answer the questions that follow

a. 	Identify i.	Solid X	(½ mark)
•••••	ii.	Process W	(½ mark)
b.	Write an o	equation for the reaction in step II.	(1mark)
c.	Explain v	why Copper is suitable in making soldering equipment.	(1mark)

13. The table below shows the solubility of a salt at various temperatures.

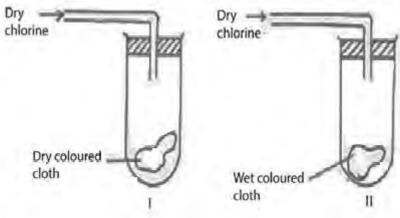
Temperature ⁰ C	Solubility (g/100g water)
0	36
40	30
80	25
100	22
120	20

(a) Define the term Fraction	onal Crystallizat	ion.		(1 mark)
	•••••			
(b) Calculate the mass of a water bath maintaine		n 20g of a saturat	ed solution of the sa	alt at 0°C is place in (2 marks)
14. The table below shows prop	perties of some e	elements A,B,C as	nd D which belong	to the same period
of the periodic table. The le	tters do not repr	esent the actual s	ymbols of the eleme	ents.
Element	Α	В	С	D

or the periodic there is not represent the decidal symbols of the elements.				
Element	A	В	С	D
M.P. °C	1410	98	-101	660
Atomic radii(nm)	0.117	0.186	0.099	0.143

Good

Poor


Non Conductor

Good

(a) Arrange the elements in the order they would appear in the period. Give a reason.	,
(b) Select the metallic element which is better conductor of electricity. Give a reason.	(1 mark)
	• • • • • • • • • • • • • •

15. Study the diagrams below.

Electrical conductivity

(a)	State the observations made at I and II.	(1mark)
(b)	Write the equations to show the reaction in II if dry sulphur (IV) oxide was used chlorine.	d in place of dry (2marks)
16	A radioactive substance weighing M kg took 1900 years for the original 15kg. Given that half-life of the radioactive substance is 380 years; (a) Determine the original mass of the radioactive substance.	mass to reduce to (2 marks)
	(b) State two uses of radioactivity in medicine.	(1 mark)
	Teacher on Ke	
		•••••
17.	20cm³ of a dibasic acid required 25cm³ of 0.1M NaOH for complete neutralizat (a) How many moles of sodium hydroxide reacted with the dibasic acid?	(1mark)
		•••••
	(b) Calculate the concentration of the dibasic acid in moles per litre.	(2mks)

18. The table below shows the standard reduction potentials for four half–cells. Study it and answer the questions that follow (letter are not the actual symbols for the elements)

				E^{θ} (Volts)
	$F_{2(aq)} + $	2 e	— 2F⁻ _(aq)	+0.54	
	$G^{2+}_{(aq)} +$	2e	\longrightarrow $G_{(s)}$	-0.44	
	$H^{2+}_{(aq)} +$	2e	$\longrightarrow H_{(s)}$	+0.34	
	$2J^+_{(aq)} + $	2e	\longrightarrow $J_{2(g)}$	0.00	
i.	Identify the strong	gest reducing	agent. Explain		(1mark)
• •					
• •					
• •					
ii.	Write the equation	for the react	ion which takes place when	solid G is added to	o a solution
	containing H ²⁺ ior	ıs.			(1 mark)
		70 1 0			(4 1)
iii	. Calculate the	e E value for	the reaction in (ii) above.		(1mark)
• •	·····				
• •	· · · · · · · · · · · · · · · · · · ·				
	_	ead (II) carbon	nate, briefly describe how a	sample of lead (II)	
p	repared.				(3marks)
		• • • • • • • • • • • • • • • • • • • •			
• •					
		• • • • • • • • • • • • • • • • • • • •			
20. 0	M-1	1	Southern the state of the state		
			in the same group in the peri ade if chlorine gas is bubble		sodium iodine?
	Explain using an ion		ace if emornic gas is outbled	a anough aqueous	(2 marks)
		_			

(b) Using the equation in (a	(b) Using the equation in (a) above, identify and explain the reducing agent.			
21. Using energy cycle diagram, c information given below.	calculate the enthalpy of form	nation of ethane from the		
$C_{(s)} + O_{2(g)}$	$CO_{2(g)}$	$\Delta H_{\rm C} = -394 \text{kJmol}^{-1}$		
***		$\Delta H_C = -286 \text{kJmol}^{-1}$		
$C_2H_{6(g)} + 5O_{2(g)}$	$2CO_{2(g)} + 3H_2O_{ l }$		(3 marks)	
22. (a). Identify the following c	leansing agents.		(2 mark)	
i CH3(CH2)CH2-C-O-Y	Na [†] ii ∕∕∕∕	\sim 0 \rightarrow oso	3 Na	
(b). State one disadvantage of us	sing the cleansing agent in	(a) (ii) above.	(1mark)	
			•••••	
23. The empirical formula of a 1554. (H=1.0, C=12.0).	hydrocarbon is C ₂ H ₃ . The l	hydrocarbon has a relative	molecular mass of	
(a) Determine the molecula	r formula of the hydrocarb	oon.	(1mark)	

(1mark)
(1mark)
(1mark)
)1325Pa?
2marks)
cid on metal
(1mark)
(1mark)
(1mark)

6. Some crystals of sugar cane were placed in a test-tube and a few drops of concert (VI) acid added to it.	ntrated sulphuric
(i) State what was observed.	(1mark)
(ii) What name is given to the property of concentrated sulphuric (VI) acid in (i)	above? (1mark)
(iii) Write an equation for the reaction between glucose, $C_6H_{12}O_6$ and $H_2SO_{4(l).}$	(1mark)
brown colourless	– 74.4 <i>kJ</i>
(a). State and explain the observation that can be made when:-	(11/ 1)
(i). Temperature is increased.	(1½marks)
(ii).Pressure is reduced	(1½marks)

THIS IS THE LAST PRINTED PAGE

