PAVEMENT FORM 4 TRIAL 2 EXAMINATION 2021/2022 Kenya Certificate of Secondary Education (K.C.S.E)

CHEMISTRY PAPER TWO MARKING SCHEME

1.	1 (a) Alkaline-earth metals		(1mark)
	(b) B		(1mark)
	(c) (i) A_2B_3 (¹ / ₂ mk)	(ii) H ₂ SO ₄	(½mark)
	(d)		

Distribution of electrons (1mk) and charges (1mk)				
No label (0mk)				
(e) D has a smaller atomic size than C//C has larger atomic size than D	(1mark)			
D has more protons than C//D has stronger nuclear charge than C	(1mark)			
(f) H (1/2mk). Loses electrons most readily/largest atomic radius/weakest nuclear charge (explanat				
(g) $2A_{(s)} + 6HCl_{(aq)}$ $2ACl_{3(aq)} + 3H_{2(g)}$	1mark			
Moles of $A = = 0.003$ moles	½mark			
Mole ratio 1:3				
Moles of $HCl = 0.003x3 = 0.009$ moles	½mark			
$\frac{1}{2}mk = 0.45M$	½mark			
(h) The melting point increase with increase in atomic number.	1mark			
This is due to increase in the strength of van der waal's forces (inter-molecular forces)	1mark			
2 (a)(i) A fuel is a substance that can be used as a source of energy.	(1 mark)			
OR A substance that produces useful energy when it undergoes a chemical or m	uclear reaction.			
(ii) Molar mass of $C_3H_8 = 12x3+1x8= 44 \text{ g mol}^{-1}$	¹ /2mark			
Heating value	1 mark			
= 50 kJ/g	¹ /2mark			
(b) (i) molar enthalpy of combustion is the heat change when one mole of a substance	is burnt completely in oxygen. (1mark)			

(ii)
$$2C(s) + H_2(g) + 226 C_2H_2(g)$$

2(-394) IE.....I 1/2O₂ 2021/2022 Page 1

Tead	che	r.c	o.l	KE

-	5/2O ₂	(1 mark)
-286		
$2CO_2(g) + H_2O(l)$		
$\Delta H_{C(ethyne)} = -(+226) + 2(-394) + (-286)$		(1 mark)
= -226-788-286		
$= -1300 \text{ kJ mol}^{-1}$		(1 mark)
(c) (i) $\Delta H_{soln} = -(-2237) + (-1650) + (2X-364)$		(1 mark)
= -141 kJ mol ⁻¹		(1 mark)
(ii)		
Ca ²⁺ (g) + 2Cl ⁻ (g)		
Energy		(3 marks)
+2237		

CaCl₂(s)

Reaction path

3 (a) (i) *Potassium nitrate (Reject KNO₃)*

(ii) $(NH_4)_2 SO_4 (S) + 2KNO_{3(S)}$ $K_2SO_{4(s)} + 2H_2O_{(l)} + N_2O_{(g)}$ (1mk)

(iii)The magnesium ribbon continues to burn with a dazzling flame forming white solid .(1mark)

This is because burning magnesium produces sufficient heat to dissociate nitrogen (I) oxide into oxygen and nitrogen gases(1/2mk). The oxygen supports combustion of magnesium to form white magnesium oxide while nitrogen combines with hot magnesium metal to form white magnesium nitride. (¹/₂mark)

(iv) I $2Mg_{(s)} + O_{2(s)}$ $2MgO_{(s)}$ (1 mark) II. $3Mg_{(s)} + N_{2(g)}$ $Mg_3N_{2(s)}$ (1 mark)

(v) $Mg_3N_{2(s)} + 6H_2O_{(l)}$ $3Mg(OH)_{2(s)} + 2NH_{3(g)}$ (1mark)

(b) (i) Manufacture of nitrogenous fertilizers such as ammonium nitrate. (any two correct uses) Manufacture of textile dyes Manufacture of explosives

(ii)

PAVEMENT PUBLISHERS 2021/2022 Page 2

(1mark)

 $HNO_{3(l)} + NH_{3(g)}$

Mole ratio: 1:1:1

Molar mass of ammonia = 17g

Molar mass of ammonium nitrate = $80g = \sqrt{\frac{1}{2}mk}$

80g NH₄NO₃ 17g

4800000g

17x4800000 = 1020000g

80

 $NH_4NO_{3(s)}$

√1mk

√*1mk*

= 1020kg of ammonia gas. $\sqrt{\frac{1}{2}}$ mk

4

a)

Total volume of water added(cm ³)	10.0	20.0	30.0	40.0	50.0
Mass of KClO ₃ (g)	5.0	5.0	5.0	5.0	5.0
Temperature at which crystals appear(⁰ C)	80.0	65.0	55.0	45.0	30.0
Solubility of KClO ₃ (g/100gH ₂ O)	<i>50.0</i> √	<i>25.0</i> √	$16.7\sqrt{\frac{1}{2}}$	$12.5\sqrt{\frac{1}{2}}$	$10.0\sqrt{\frac{1}{2}}$
	1/2	1/2			

NB: $\sqrt{\frac{1}{2}mk}$ for expressing solubility values to the same number of decimal points

b) Graph marking points: scale (graph to cover $\ge \frac{1}{2}$ grid) $\sqrt{\frac{1}{2}}$

Labeling of $axes\sqrt{\frac{1}{2}}$ Plotting of points $\sqrt{1}$ Curve (smooth) $\sqrt{1}$

c) i) $11g/100gH_2O\sqrt{1}$

- *ii)* $72^{0}C(+/-0.5)\sqrt{1}$
- *d)* Solubility of KClO₃ increases with increase in temperature/more KClO₃ dissolves as temperature rises $\sqrt{1}$
- e) Extraction of soda ash(Sodium carbonate) from Trona $\sqrt{1}$ Extraction of common salt(sodium chloride). Etc.

5 (a)

(b) **B** – Sodium Nitrate/KNO₃ \checkmark **1**

PAVEMENT PUBLISHERS 2021/2022 Page 3

- L Concentrated H₂SO₄ \checkmark 1
- (c) A Retort Flask $\checkmark 1$
- (d) $NaNO_{3(s)} + H_2SO_{4(l)} \rightarrow HNO_{3(aq)} + NaHSO_{4(aq)} \checkmark 1$
- (e) HNO₃ is a powerful \checkmark 1 oxidizing agent. It oxides H₂ \checkmark 1 to water.
- (f) Semen storage for artificial insemination. ✓1
 Manufacture of ammonia in the Haber process ✓1
- 6. a) -Ammonia gas -Limestone / cal
 - -Limestone / calcium carbonate -Brine / concentrated sodium chloride
- b) Ammonia gas
- c) Filtration
- d)
- e) i)
- ii)

From equation: 2 moles NaHCO₃ produces 1 mole Na₂CO₃ R.F.M of NaHCO₃ is $(1 \times 23) + (1 \times 12) + (3 \times 16) = 84$ $\binom{84g}{1000g} \times 1$ kg is 0.084 kg 2 mole NaHCO₃ is 0.084 x0.168 kg R.F.M of Na₂CO₃ is $(2 \times 23) + (1 \times 12) + (3 \times 16) = 106$

(106 g/ 1000g x 1 kg) is 0.106 kg If, 0.168 kg NaHCO₃ produces 0.106 kg 98.128 produces (<u>98.128 x 0.106</u>) 0.168

= 61.9109Kg Solid Z

7 (a)

But - 1 - yne

1-butyne

But -2 - yne (structure $\frac{1}{2}$ mk, name $\frac{1}{2}$ mk total 2mks)

(c) (i) Harmful rays from the sun reaches the earth's surface causing harm to humans 1mk

2-butvne

(ii) Contribute to global warming 1mk

(d) (i) I Oxidation $(\frac{1}{2}mk)$

PAVEMENT PUBLISHERS 2021/2022 Page 4

II A: Propene B: Sodium propanoate C: Ethane (1½mk)

(ii) $2C_2H_6 + 7O_2$ $4CO_2 + 6H_2O (1mk)$

(iii) Used in manufacture of polypropene used in making ropes, plastic crates, buckets, basins, plastic tables and chairs etc

Manufacture of other chemicals e.g. acetone, propan-1-ol etc

Used as an alternative to ethyne(acetylene) in welding flame

(e) Add sodium carbonate/ sodium hydrogen carbonate to separate samples of each 1mk. Propanoic acid produces bubbles of a gas/effervescence/fizzling while propan-1-ol does not 1mk