Name:	Index No
School:	Candidate's Sign
	Date:

232/1 PHYSICS PAPER 1

2021

MARKING SCHEME

TIME: 2 HOURS

PAVEMENT NATIONAL EXAMINATION

TRIAL 2 2021

Kenya Certificate of Secondary Education (K.C.S.E.)

Instructions to candidates

- a) Write your name, index number in the spaces provided above.
- b) This paper consists of TWO Sections: A and B.
- c) Answer ALL the questions in section A and B in the spaces provided.
- d) ALL working MUST be clearly shown.
- e) Mathematical tables and silent non programmable electronic calculators may be used.
- f) This paper consists of 11 printed pages
- g) Candidates should answer the questions in English

FOR EXAMINER'S USE ONLY

Section	Question	Maximum	Candidate's
		Score	Score
A	1 – 10	25	
	11	7	
	12	6	
_	13	11	
В	14	10	
	15	11	
	16	11	
	Total Score	80	

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

1 | 11 2 3 2 / 1

SECTION A (25 Marks)

Answer all the questions in this section in the spaces provided

1.	The level of water in a burette is at 30 cm ³ . 400 drops of water each of volume 0.015 cm ³ wa	s removed
	from the burette. Determine the new level of water in the burette	(3 marks)
	Volume of drop = (400 x 0.015) = 6 cm² /	
	= 6 cm² / New level = 30+6 = 36 cm² /	
2.		
	s.h.c of water = 4200 J/kg/K)	(3 marks)
	Heat gain GRE - MCAO 10 x 20 - 4200 X A.D.	
	10-x-20-2-4-20-0-x-1/2-9	•••••
	Temperature Change; DD = 0.0476°C	
3.	J	(1 mark)
	Per cubic metre L Doni AWA Kilogram	RD Symb
4.	Give a reason why heat transfer by radiation is faster than heat transfer by conduction	(1 mark)
	Radiation is propagated by means of Eleshomagnetic Waves White Conduction is I	σy
	movement of particles which is prone to distractions through Collisions.	()
5.	A railway truck of mass 4000 kg moving at 3 m/s collides with a stationary truck of mass 20	00 kg. The
	couplings join and the trucks move off together. Calculate their common velocity after collis	ion.
	$M_1U_1+M_2U_2=(M_1+M_2)V$	(3 marks)
	$4000 \times 3 + 0 = 6000 \times $	لرح
	y = 2m/s /	••••••
	2 11	232/1

6.	State the principle of moments	(1 mark)
	for a system in equilibrium the sum of cloc	twice
	moments about a point is equal to the	Sum
	for a system in equilibrium the sum of cloc moments about a point is equal to the of antictockwise moments about the same	Point
7.	An air bubble with a volume of 1 cm ³ escapes from the helmet of a diver at a depth of 200 r	n below the
	water surface. What will be the volume of the bubble immediately it breaks the surface of w	ater? (Take
	$atmospheric\ pressure = 10\ m\ of\ water)$	(4 marks)
	$P_1 V_1 = P_2 V_2 V$	
	1x (200+10) = (10 x Pz)	
	10 P2 = 210 10	
	p = 21 cm3 V	
	·	
8.		
	height of 54.2 m in 1.08 s.	(3 marks)
	$S = ut + ygt^2$	
	54.2 = 0+1/xg x 1.082 V	
	9 = 54·2 0·5832	
	= 92.94 m/c²	
Q	State the three factors on which the rate of heat flow depends on.	(3 marks)
٦.	- Temperalure di Heren (/	(5 marks)
	- Area of cross-section any three	••••••
	- Temperature difference / - Arra of cross-section / any three - the length of the conductor (3) - Nature of the Modernal /	•••••
	- Nature or the Maderial V	•••••
10.	Under a driving force of 3000 N, a car of mass 1200 kg has an acceleration of 1.3 m/s ² . Find	d the frictional
	resistance acting in the car.	(3 marks)
	f=mq /	
	$= 1200 \times 1.3 \tag{3}$	
	= 1560N V	
	= 1560N / FRICTION = 3000 - 1560 = 1440N/	
	3 11	232/1

SECTION B (55 marks)

Answer ALL the questions in this section in spaces provided

11. (a) The diagram below shows a set up used by a student to show variation of pressure in a liquid. The thistle funnel is wrapped with an elastic membrane. Use it to answer the question that follow.

State and explain the effect on the height, h, when the thistle funnel is moved upwards towards the surface of the liquids. (2 marks)

- The height h reduces V (3)
 pressure attmg on the trapped gas reduces

(b) Figure below shows a simple barometer.

(i) What name is given to region A? (1 mark)

Torricelian Vacuur

- (ii) What keeps the mercury in the tube? (1 mark) The atmospheric Pressure
- (iii) What is the value of the atmospheric pressure being shown by the barometer?

4 | 11 232/1

5 | 11 2 3 2 / 1

13. a) Sketch a velocity-time graph of a ball dropped to the ground and caught when it bounces up again.

(2 marks)

b) In areas of the world where a plane is unable to land free fall airdrops can be used to deliver supplies.

A plane travelling at a speed of 90m/s and a height of 100m releases a load of supplies.

(i) Sketch the path followed by the falling load.

(1 mark)

(ii) Find the horizontal distance of the load from the drop zone to where it landed. (3 marks)

 $h = \frac{1}{9}$ $\frac{1}{2}$ Range = Ut $100 = \frac{1}{2} \times 10^{2} \times 12^{2}$ = $90 \times 4 \cdot 472$ $= 402.48 \text{ m} \times 3$

c) Define the Newton.

(1 mark)

Is the force that gives a mass of I kilogram an acceleration of I metre per square second:

(i) the retardation. (2 marks)

$$U = 60 \times 5$$

$$= 16.67 \text{ m} \text{ m}$$

$$0 = 16.67^2 + 2 \times 104$$

$$20a = -277.89 \text{ m} \text{ m}$$

$$2 = -13.89 \text{ m} \text{ m}$$

$$2 = -13.89 \text{ m} \text{ m}$$

$$2 = -13.89 \text{ m} \text{ m}$$

(ii) find the average breaking force. (2 marks)

14. a) The figure below shows the motion of a ticker tape through a ticker-timer whose frequency is 100Hz.

(i) Velocity at AB and PQ (2 marks)

$$V_{AB} = \frac{12}{2 \times 0.01}$$
 $V_{PQ} = \frac{32}{2 \times 0.01}$
 $V = 600 \text{ cm/s}$
 $V = 1600 \text{ cm/s}$

(ii) Acceleration of the tape. (2 marks)

$$\frac{c \times c \times c \times c}{c} = \frac{c \times c}{c} = \frac{c \times c}{c} = \frac{c \times c}{c} = \frac{c}{c} = \frac{c}{c}$$

- **b)** Sate two factors that affect centripetal force of a body moving a circular path. (2 marks)
 - The radius of the curve. Ite body any Two
 The linear helocity of the body of the body

(i) The centripetal acceleration of the stone.	(2 marks)
$a = \frac{y^{1}}{7}$ $= \frac{6.3.2^{2}}{3.3.2}$ $a = \frac{12.482 \text{ m}}{3.2}$	(2)
= 6.32.	2
3:2	
(ii) The tension in the rope when the stone is at the highest point.	(2 marks)
$T = \frac{mv^2}{m} - mg$ $T = 14.99$	8 – 16
$= 1.2 \times 12.48 - 1.2 \times 10$	<u> </u>
-12×16 40 - 1°2×10 1	
a) State the law of floatation.	(1 mark)
flouting body displaces its own weight	ght of 100
fluid in which it floats.	
b) You are provided with the following	
A block of wood.A spring balance.	
 A thin thread. 	
Overflow canA small measuring cylinder.	
A small measuring cylinder.Some liquid.	
With the aid of a labelled diagrams describe an experiment to verify the law of	floatation.
- Suspend the block and weight in air weight of water (offected) - Measure the weight of water (offected) A block of length 80cm, cross sectional area 3.0cm² and density 1300kg/m³ is compared to the control of the	(4 marks)
Weight in air	
- Eusperd in Cylinder an	a ger us
Weyl suspend Ite	block in or
can and (orlectite	overflow &
a measuring cy Im	de la cul
- Milasue Ite weight	t of the off
a) A block of length 80cm cross sectional area 3 0cm² and density 1300kg/m³ is come	olataly immerced in
a liquid of density 1030kg/m³. Determine	netery infinersed in
(i) The mass of the block.	(1 mark)
(i) The mass of the clock.	,
m = ve	

c) A stone of mass 1.2 kg is tied to a rope and whirled in a vertical circle of radius 3.2m with a speed of

(ii)	The	weight	of	the	block	in	the	liqui	d.

U= RV9. = 1030 × 0,8 × 3 × 10 4 × 10

$$-2.4120$$

d) The diagram below shows a car acid hydrometer.

(i) Indicate on the diagram the maximum and minimum measurements to be taken.

(ii) State the reason why the bulb is wide.

to displace there volume thus ingreasing

16. a) (i) State Charles law.

(1 mark)

(ii) A gas of volume 2m³ at 27°C is cooled to -123°C, at constant pressure. What is its new volume?

Syringe Air

The figure shown illustrates an apparatus in which a fixed mass of air was compressed in a calibrated syringe, which was approximately half full of air at atmospheric pressure and a temperature of 17°C corresponding values of volume and pressure of the trapped air as shown in the table.

Pressure (Kpa)	50	60	75	90	105	120
Volume (cm³)	0.00048	0.00040	0.00032	0.00027	0.00023	0.00020
¹ / _{volume}	2083/	2500	3125	3704	4348	5000

All correct

(i) Complete the table by calculating values for $\frac{1}{Volume}$ some of the values have been entered for you.

(1 mark)

(ii) On grid paper plot a graph of pressure on the y-axis against $\frac{1}{Volume}$ on the axis. (5 marks)

10 | 11 2 3 2 / 1

