Name:		•••••	Index No.
School:		•••••	Candidate's Sign
Date:		••••••	
232/3 PHYSICS	MARKING	&cl	3M3H
PAPER 3 2021			

TIME: 2 ½ HOURS

PAVEMENT NATIONAL EXAMINATION

TRIAL 2

Kenya Certificate of Secondary Education (K.C.S.E.)

Physics

Paper 3

INSTRUCTIONS TO CANDIDATES:

- Write your **name** and **index number** in the spaces provided above.
- Sign and write the **date** of the examination in the spaces provided above.
- You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for a clear record of the observation actually made, their suitability, accuracy and the use made of them.
- Candidates are advised to record their observations as soon as they are made
- Non-programmable silent electronic calculators may be used.
- Candidates should check the question paper to ascertain that all the pages are printed and that no questions are missing.

For Examiner's Use Only.

Question	Maximum score	Candidate's score
1	20	
2	20	
Total	40	

This paper consists of 6 printed pages candidates should check the questions to ascertain that all pages are printed as indicated and that no questions are missing

Question1

You are provided with the following apparatus

- One stand with the clamp and the boss
- One 100g mass
- 100cm long thread
- Two pieces of wood
- Stop watch
- a) Set up the apparatus as shown below.

- b) Adjust the length L of the thread so that L = 70cm. Give the mass m a slight displacement and release so that it oscillates freely. Measure the time t for twenty oscillations and record in the table below.
- c) Repeat the procedure above for other values of L as shown and complete the table.

Length L (cm)	70	60	50	40	30	20	
Length L(m)	0.70	0.0	0.20	0.40	0.30	0.20	(2dp)
Time for 20 oscillation Range (36-15)	34.07	31.57	29.16	26.25	22.78	18.61	for each
Period T(s) 4s = (a most)	1.704	1.579	1.458	1.313	1:139	0 9305	(rdp)
T2(s2) 4SF (9 Mugy	2,902	2-492	2.126	1,723	1,786	0.8658	V(D)
							9

(9 marks)

(5 marks)

i. Determine the slope of the graph

(3 marks)

Slope =
$$\frac{\Delta T^2}{\Delta L}$$

= $\frac{2.5 - 1.25}{0.6 - 0.3}$ \(\frac{1}{2}\)

= $\frac{0.6 - 0.3}{0.6 + 0.3}$ \(\frac{1}{2}\)

= $\frac{4.1667}{0.67}$ \(\frac{5^2}{m}\)

= $\frac{4.1667}{0.67}$ \(\frac{5^2}{m}\)

= $\frac{4.1667}{0.67}$ \(\frac{5^2}{m}\)

= $\frac{4.1667}{0.67}$ \(\frac{5^2}{m}\)

.....

ii. Given that $T^2 = \frac{4\pi^2 l}{g}$ determine the value of the constant **g** (3 marks)

Slope = $\frac{471^2}{9}$ $9 = \frac{471^2}{4'1667}$

= 9.475 m/s² / device 1 mk for words

QUESTION 2

You are provided with the following apparatus

- A wire mounted on a mm scale
- A voltmeter (0-3 or 0-5.v)
- An ammeter
- A switch
- Two dry cells and a cell holder.
- Six connecting wire with at least two crocodile clips.
- A micrometer screw gauge

Procedure.

(a) Using the micrometer screw gauge, determine the diameter d of the wire at three different points. $d_1 = 0.35$ mm, $d_2 = 0.34$...mm,

(2 marks)

$$A = \pi_{Y^2}$$

$$= 3.142 \times (3.5 \times 10^{-4})^2$$

$$= 9.625 \times 10^{-8} \text{m}$$

(c) Set up the circuit as shown below.

(d) Vary the length by using the crocodile clip along the wire from (when L =0). Record the voltmeter and ammeter readings in the table below. (5 marks)

J& 0.15 <		→ 025				
Length L (cm)	80cm	60cm	40cm	20cm	0cm	
Current I (A)	0.72	0.30	0.40	0.60	2,0/6	
Voltage (V)	2.5√	2.4	2.3 🔨	2.2	0.5 1	
Ver 3.0 < Reach correct a mark						

(5 marks)

(f) Determine the slope of the graph.

(2 marks)

- (g) Given that V = -Ir + E,
 - (i) calculate the internal resistance of the cell.

(2 marks)

(ii)	determine the emf (E) of the battery.	(2marks)	
	determine the emf (E) of the battery. $E = V - intercept$		
	= 2.8Y		
		•••••	
		•••••	