THE ROYAL EXAM SERIES

Kenya Certificate of Secondary Education

FORM 4

TERM 2

SEPTEMBER 2021-2 HOURS

Name	Index Number:
School	
Candidate's Signature	. Date

Instructions to Candidates

- 1. Write your name and index number in the spaces provided above.
- 2. Answer all the questions in the spaces provided.
- 3. All working must be clearly shown.
- 4. Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

For Examiner's Use only

Questions	Maximum score	Candidates score
1 - 25	80	

This paper consists of 10 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

ANSWER ALL QUESTIONS

1. The pH values of some solutions labeled **E** to I are given in the table **below**. Use the information to answer the questions that follow.

10	answer the q	uestions ma	l Ionow.					
	PH	14.0	1.0	9.0	6.5	5.0		
	Solution	Е	F	G	Н	Ι		
(a) Ide	ntify the solu	tion with the	e highest c	oncentratio	n of hydro	xide ions. Ex	xplain (1mk)	
			-	•••••			-	
(b). Wl	nich solution	can be used	as a remed	ly for acid i	ndigestion	in the stoma	ach? Explain (1mk)	
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	
	• • • • • • • • • • • • • • • • • • • •		•••••	••••••••••	•••••			
(c) Wh	ich solution v	would react e	explosively	with Potas	ssium meta	1?	(1mk)	
2 ->	Distingues in 1				- 4	4	(21)	
2. a)	Distinguish b	between 10n1	zation ener	rgy and ele	ctron attini	ty	(2mks)	
								-

.....

b) The table below shows first ionization energies of metals represented by letters A, B, C and D. The metals are in the same group of the periodic table.

		Metal	А	В	C	D	
	1 st ion	ization energy (kJ/mole	402	496	520	419	
•••••	Which of the metals has the smallest atomic radius? Explain. (2mks)						
3.	An elem	ent: ${}^{23}_{11}M$					
	(a) To which chemical family does it belong? $(^{1}$						₂ mk)
(b) Write the electron arrangement of the atom. (¹					2mk)		
	(c)	Draw the structure of its i	ion.			(11	nk)

© TRE52021

2

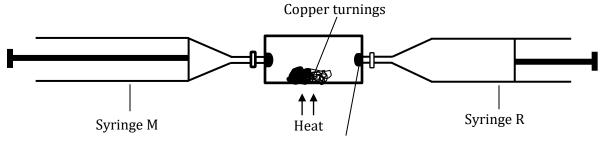
4.	(a) Define electrolysis.	(1mk)
•••••		
(b)	During the electrolysis of molten aluminium oxide, write the equations at the;	
	Anode	(1mk)
	Cathode	(1mk)

5. In an experiment to determine the percentage purity of Sodium carbonate produced in the Solvay process, 2.15g of the sample reacted with exactly 40.0cm³ of 0.5M Sulphuric (VI) acid. Determine the percentage purity of sodium carbonate in the sample. (3mks)

6. Y is a product of gaseous reaction which results in an equilibrium mixture being formed. **Reactants** \Longrightarrow Y

The percentage of Y in equilibrium at various temperatures and pressure is shown in the following table.

Temperature (⁰ C)	1 atm	100 atm	200 atm
550	0.77	6.70	11.9
650	0.032	3.02	5.71
750	0.016	1.54	2.99
850	0.09	0.87	1.68

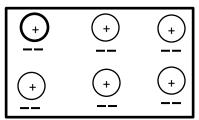

3

Use this data to deduce, giving a reason for each case;

a) Whether production of Y is exothermic or endothermic.	(2mks)
b) Whether production of Y involves an increase or a decrease in number of moles (2mks)	
	State and explain what is observed when moist red flowers are dropped in a g Sulphur (IV) oxide gas. (3mks)	as jar containing
•••••		
•••••		
	A sample of water collected from River Gucha is suspected to contain sulphate ion experiment that can be carried out to determine the presence of the sulphate ions. (2mks)	s. Describe an
9. D	During distillation in a laboratory the distillate can be collected either by a beaker or	
(a)	Define the term distillate.	(1mk)
(b)	Explain why a conical flask is the most preferred apparatus for the collection of the distillate.	(1mk)
 (c)	Draw the diagram of a graduated conical flask.	(1mk)

Teacher.co.ke

10. In an experiment to determine the proportion of oxygen in air, copper turnings were packed in excess in a long combustion tube connected to two syringes of 110cm^3 each in volume. At the beginning of the experiment, syringe R contained 110cm^3 of air while syringe M was closed and empty as shown.



Glass wool

Air was passed over the heated copper slowly and repeatedly until there was no further change in volume. 97.5 cm^3 of air remained in syringe M.

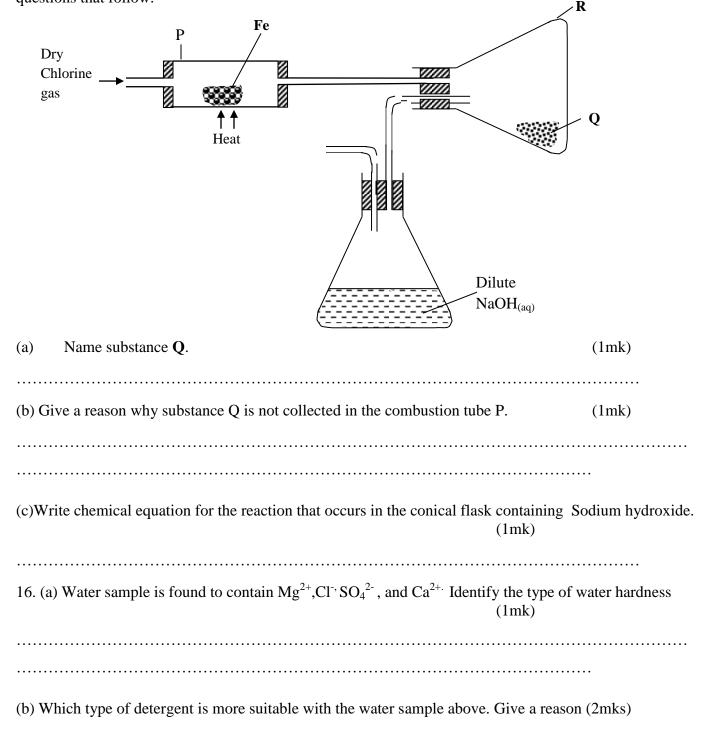
(a)	State and explain the observation made in the combustion tube.	(2mks)
(b)	If the volume of air in the combustion tube at the beginning of the experiment was 23.8cm^3 and at the end of the experiment reduced to 10cm^3 , calculate the percentage of the active part of air.	(2mks)

11. Below is a structure of an element X. Use it to answer the questions that follow.

(a) Name the chemical family to which element X belongs. Give a reason. (2mks)
(b) (i) Define covalent bond. (1mk)

© TRE52021

5


12.	(a) (i) State <i>two</i> allotropes of Carbon.	(1mk)
	(ii) Explain the differences in their densities.	(2mks)
(b) mater	(i) Name the process used for large scale production of Sodium Carbonate using b ial.	orine as raw (1mk)
(ii)	Write the overall chemical equation for the reaction in the carbonator.	(1mk)
(c)	Name two gases recycled in the above process	(1mk)
13. N	ame the following compounds using the IUPAC system. (i) $CH_3 CH_2 CH_2 CH_2 C = CH$ $\begin{vmatrix} & & \\ & & \\ & & \\ Br & CH_3 \end{vmatrix}$	(3mks)
••••••	(ii) CH ₃ CH ₂ OH	
	CH ₃ (iii) CH ₃ CHCHCHCH ₃ I I Cl Cl	

© TRE52021

Teacher.co.ke

15. The diagram below shows how chlorine reacts with metals in the laboratory. Study it and answer the questions that follow.

(c) Permanent water hardness cannot be removed by boiling. Explain	(1mk)
17. Starting with lead metal, write procedure on preparation of lead(II) nitrate cr	rystals (3mks)
10. The following chemical equations show the effects of heat on nitrates	
18. The following chemical equations show the effects of heat on nitrates. $2B(NO_3)_{2(s)} \longrightarrow 2BO_{(s)} + 4NO_{2(g)} + O_{2(g)}$	
$2ANO_{3(s)} \longrightarrow 2ANO_{2(s)} + O_{2(g)}$	
a. Arrange elements A, B and C from the most reactive to the least reactive to the leas	ctive. $(1^{1}/_{2}$ mks)
b. Give one example of element A, B and C.	
$(1^{1}/_{2}$ mks)	

19. Copper (II) sulphate crystals, a boiling tube, a test-tube, a beaker and other necessary requirements were used in an experiment to determine the type of change that occurred when the crystals were heated.(a) Draw a labelled diagram to represent the set-up at the end of the first part of the experiment.

(3mks)

(b) After the second part of the experiment was done, state the conclusion that was made about the type of change undergone by copper (II) sulphate crystals when heated. (1mk)
20. (a). Distinguish between chromatography and a chromatogram. (1mk)

	thletics competitions. (1mk)
1. Study the polymer shown below. O O H H \parallel \parallel \parallel \parallel \parallel \parallel H - O - C - (CH ₂) ₄ - C - N - (CH ₂) ₆ - N - H a) Name the polymer.	(1mk)
b) Identify two monomers that make up the polymer.	(2mks)
c) Give one use of the polymer (1mark)	
2. (a) State Charles law.	(1mk)
(b) A gas occupies 450cm ³ at 27 ⁰ C. What volume would the gas occup remains constant?	by at 177 ⁰ C if its pressure (2mks)
3. A colourless liquid was suspected to be water. State two ways to confirm (i) Purity of the water.	(1mk)

© TRE52021

24. Use the following information to answer the questions that follow

 $\Delta H_{lattice} MgCl_2 = +2493 \text{ kJ/ mol}$ $\Delta H_{hydration} Mg^{2+} = -1920 \text{ kJ/ mol}$ $\Delta H_{hydration} Cl^{-} = -364 \text{ kJ/ mol}$

a) Calculate the heat of solution of magnesium chloride.	(2mks)
	• • • • • • • • • • • • • • • • • • • •
b) Draw an energy level diagram for the dissolving of magnesium chloride	(2mks)

END

.....