
THE ROYAL EXAM SERIES

Kenya Certificate of Secondary Education

DECEMBER 2021- 2¹/₄ HOURS

Name	Index Number:
School	
Candidate's Signature	. Date

Instructions to candidates

- a. Write your name, class, admission number, index number, signature and date in the spaces provided above.
- b. Answer ALL the questions in the spaces provided in the question paper.
- c. You are not allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- d. All working MUST be clearly shown where necessary.
- e. Mathematical tables and silent electronic calculators may be used.
- f. This paper contains 8 printed pages.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	23	
2	10	
3	07	
Total Score	40	

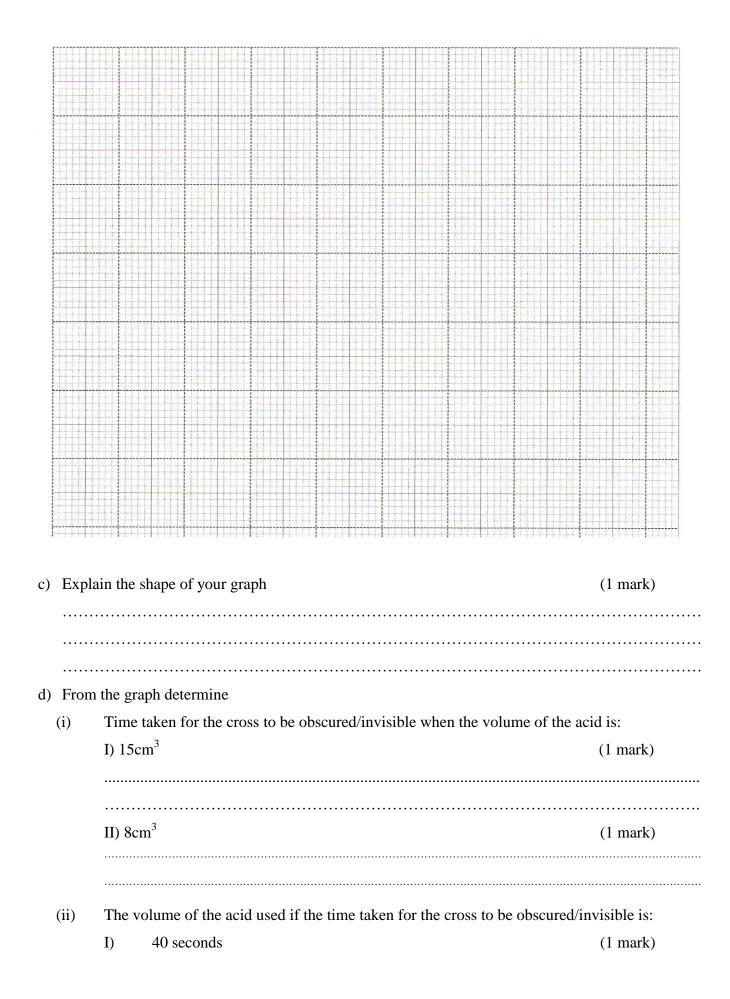
1. You are provided with:-

- Solution **T**, 2M Hydrochloric acid.
- Solution **P**, 0.15M Sodium thiosulphate
- Solution **S**, Sodium carbonate

Procedure 1

Measure 20cm^3 of 0.15M Sodium thiosulphate (solution **P**) into a 250cm³ a conical flask. Place the beaker on a white piece of paper with **ink mark** '**X**' on it. Measure 20cm^3 of 2M hydrochloric acid solution **T** using a 50cm³ measuring cylinder. Put the acid into the conical flask containing Sodium thiosulphate and immediately start off the stop watch. Determine the time taken for the **mark** '**X**' to become invisible /obscured when viewed from above. Repeat the procedure by measuring different volumes of the acid and adding the volumes of the distilled water to complete Table I below.

Volume of	Volume of	Volume of sodium	Time taken for mark 'X' to be	Reciprocal of
acid (cm ³)	water (cm ³)	thiosulphate (cm ³)	invisible/obscured (seconds)	time (sec ⁻¹)
				<u>1</u>
				t
20	0	20		
18	2	20		
16	4	20		
14	6	20		
12	8	20		
10	10	20		


<u>Table I</u>

a) Complete the table above

b) Plot a graph of 1/t (rate) against volume of acid used.

(3 marks)

(6 marks)

		••••••
II)	43 seconds	(1 mark)

Procedure 2

Using a 10 cm³ measuring cylinder, place 10 cm³ of solution T into a 250 ml volumetric flask. Add about 200 cm³ of distilled water. Shake well. Add more distilled water to top up to the mark. Label this solution U. Fill the burette with solution U. Using a pipette and pipette filler, pipette 25 cm³ of solution S into a conical flask. Add 3 drops of Phenolphthalein indicator and titrate with solution U.

- Record your results in the table.
- Repeat the titration two more times and complete the table.

Table 2

	Ι	II	III
Final burette reading (cm^3)			
Initial burette reading (cm^3)			
Volume of solution U (cm^3) added			
			(4 marks)

a) Determine the:-

. .

(I) Average volume of solution U used. (1 mark)

(II) Moles of the acid in the average volume of solution U used.	(2 marks)

(IV) Concentration of solution S in moles per litre. (2 marks)

.....

2. (a) Put a spatula end-full of solid Q into a boiling tube and add about 10cm³ of distilled water. Shake the mixture well. Divide the resultant solution into 4 equal portions.

Observations		Inferences	
	(½ mark)		(1 mark)

(b) (i) The solution is suspected to contain **ammonium ions**. Using **calcium hydroxide solid** and **red litmus paper** provided, describe how you would confirm presence of the **ammonium ions**.

Description	Expected observations
(1 mark)	(½ mark)

(ii) Carry out the actual test as described in (b) (i) above.

Observations		Inferences	
	(1 mark)	(1	∕₂ mark)

(c) To the second portion, add 4 drops of hydrogen peroxide solution. Test the gas produced using a glowing splint.

Observations	Inferences
(1 mark)	(1 mark)

(d) (i) The solution is also suspected to contain **sulphite ions**. Using **Barium nitrate solution** and **dilute hydrochloric acid** solution, describe how you would confirm presence of the **sulphite ions**.

Description	Expected observations
(1 mark)	(1 mark)

(ii) Carry out the actual test as described in (d) (i) above.

Observations		Inferences	
	(1 mark)		(½ mark)

- 3. You are provided with solid R. Carry out the tests below and record your observations and inferences in the spaces provided.
 - (i) Place one third of solid R on a metallic spatula. Burn it in a non-luminous flame of the Bunsen burner.

Observation	Inference
(1 mark)	(1 mark)

(ii) Place the remaining solid in a test-tube. Add about 6cm³ of distilled water and shake the mixture well. Retain the solution for the next procedure.

Observation		Inference	
	(1/2 mark)		(1/2 mark)

(I)To about 2cm³ of the solution, add 2 drops of acidified potassium manganate (VII).

Observation	Inference
(1 mark)	(1 mark)

(II)To about 1cm³ of the solution, add 3 drops of acidified potassium dichromate (VI) and warm.

Observation		Inference	
	(1/2 mark)		(1/2 mark)

(III) To about 2cm³ of the solution, add 1g of sodium hydrogen carbonate.

Observation	Inference
(½ mark)	(½ mark)