SAMIA SUB-COUNTY JOINT EXAMINATION-2021

Kenya Certificate of Secondary Education (K.C.S.E) Trial Examination CHEMISTRY PAPER 3 MARKING SCHEME

1. You are provided with :

Solution **Q**, 2M Hydrochloric acid.

Solution P, 0.15M Sodium thiosulphate

Solution **R**, Sodium carbonate

Procedure 1

Measure 20cm³ of 0.15M Sodium thiosulphate (solution **P**) into a 100cm³ a glass beaker. Place the beaker on a white piece of paper with **ink mark 'X'** on it. Measure 20cm³ of 2M hydrochloric acid solution **Q** using a 50cm³ measuring cylinder. Put the acid into the glass beaker containing Sodium thiosulphate and immediately start off the stop watch. Determine the time taken for the **marks 'X'** to become invisible/obscured when viewed from above. Repeat the procedure by measuring different volumes of the acid and adding the volume of the distilled water to complete table 1 below.

Table 1

Volume of acid(cm ³)	Volume of water(cm ³)	Volume of sodium thiosulphate (cm ³)	Time taken for mark 'X' to be invisible/obscured(seconds)	Reciprocal of time (sec ⁻¹) <u>I</u> t
20	0	20	33	0.0301
18	2	20	37	0.0270
16	4	20	41	0.0240
14	6	20	47	0.0210
12	8	20	57	0.0180
10	10	20	63	0.0160

- a. Complete the table below
 - CT 1 DP ¹/₂ AC ¹/₂

AC /

TREND 1

Calculations of R $\frac{1}{2}$ for each calculation done correctly.

b. Plot a graph of I/t (rate) against volume of acid used. (3mks)

(6mks)

Teacher.co.ke

L	1/2
S	1/2
Р	1/2
Line	<u>1</u>
	03

The graph must be a straight line from the origin, otherwise award zero for the line

- c. Explain the shape of your graph (1mk)
 Straight line graph from the origin ½ increase in volume of HCI increases rate of reaction <u>I</u>
 - This is due to increase in the number of reacting particles hence more successful collisions. ¹/₂
- d. From the graph determine;

t

	i. Time taken for the cross to be obscured/invisible when the volume of the	e acid
	is:	
	15cm ³	(1mk)
	Showing on a correctly plotted graph	
	If graph is not correctly plotted, penalize fully	
	8cm ³	(1mk)
	Some applies as in (i) above.	
	ii. The volume of the acid used if the time taken for the cross to be	
	obscured/invisible is:	
	40seconds	(1mk)
•	Same to (i)	
	43 seconds	(1mk)
	Same to (i)	

Procedure 2

Using a 10cm^3 measuring cylinder, place 10cm^3 of solution **Q** into a **250ml** volumetric flask. Add about 200cm³ of distilled water. Shake well. Add more distilled water to top up to the mark. Labeled this solution **T**. Fill the burette with solution **T**. using a pipette and pipette filler, pipette 25cm^3 of solution **R** into a conical flask. Add **3 drops** of phenolphthalein and titrate with solution **T**.

- Record your results in the table
- Repeat the titration two more times and complete the table

Table 2

		II	III
Final burette reading(cm ³)	15.0	15.0	15.0
Initial burette reading(cm ³)	0.0	0.0	0.0
Volume of solution T (cm ³) added	15.0	15.0	15.0

a. Determine the : Average volume of solution T used (1mk)15.0 +15.0 +15.0 $\frac{1}{2}$ 3 =15.0 cm³ $\frac{1}{2}$ Moles of the acid in the average volume of solution T used. (2mk) $M_1V_1 = M_2V_2$ $M_2 = 10 \times 2$ 250cm³ 1/2 =0.08M $\frac{1}{2}$ No. of moles = 0.08×15.0 $\frac{1}{2}$ 1000 = 0.0012 moles $\frac{1}{2}$ Accept any other correct method Concentration of solution R in moles per litre. (2mks) $Na_2CO_{3(s)} + 2HCI_{(aq)}$ \longrightarrow $2NaCI_{(aq)} + CO_{2(g)} + H_2O_{(I)}$ No. of moles in Na₂CO₃ = 0.00122 =0.0006 moles $\frac{1}{2}$ Or answer in (iii) =answer in (ii) 2 1 mark M=<u>0.0006×1000</u> 25 $= 0.024 M \frac{1}{2}$

Teacher.co.ke

2.

a. Put a spatula end-full of **solid A** into a boiling tube and about 10cm³ of distilled water. Shake the mixture well. Divide the resultant solution into **4 equal** portions.

Observation	Inferences
Solid A dissolves to form a pale green solution.	Cu ²⁺ and Fe ²⁺ present
(½mk)	(1mk)

eacher.co.ke

b. To the first portion, add a little calcium hydroxide solid and warm. Test any gases produced using both blue and red litimus paper.

Observation	Inferences
Red litmus paper turns ¹ /2	NH4 ⁺ present
Blue litmus paper venaire blue ½	
(1mk)	(1mk)

c. To the second portion, **add 4** drops of hydrogen peroxide solution. Test the gas produced using a glowing splint.

Observation	Inferences
 Pale green solution turns brown ¹/₂ Colourless gas relights a glowing splint ¹/₂ 	Fe ²⁺ oxidized to Fe ³⁺ (must have appeared in (a) and tied to pale green turns brown in observation)
(1mk)	(1mk)

d.

i. The solution is also suspected to contain sulphite ions. Using Barium nitrate solution and dilute hydrochloric acid solution. **Describe** how you would confirm presence of the sulphite ions.

Observation	Inferences
- To the third portion add 3 drops of Ba(NO ₃) ₂ followed by 3 drops of HCI(aq) ¹ / ₂	White precipitate soluble on addition of dilute HCI _(aq)
(1mk)	(1mk)

ii. Carry out the actual test as described in (d) (i) above

Observation	Inferences
White precipitate insoluble on addition of	SO4 ²⁻
HCI	Present
(1mk)	(1mk)

- 3. You are provided with solid **B**. carry out the tests below and record your observation and inferences in the spaces provided.
 - i. Place one third of solid **B** on a metallic spatula. Burn it in a non-luminous flame of the Bunsen burner.

Observation	Inferences
Solid B melts and burns with yellow sooty flame	$c=c$ $r \equiv c-$
(1mk)	(1mk)

ii. Place the remaining solid in a test-tube. Add about **6cm³** of distilled water and shake the mixture well. Divide the resulting mixture into 4 portions.

Observation	Inferences
Solid B dissolves to form a colourless solution	Polar organic compound.
(½mk)	(½mk)

a. To the first portion, **add 2** drops of acidified potassium manganite (VII)

Observation	Inferences
Purple KMnO ₄ /H ⁺ turns colourless	
Or	
Purple KMnO ₄ /H ⁺ is decolourised	/
	R-OH presnt
(1mk)	(1mk)

b. To the second portion, **add 3** drops of acidified potassium dichromate (VI) and warm

Observation	Inferences
Orange colour of $K_2Cr_2O_7/H^+$ is	R-OH absent
retained/persists/remains orange/Does not	
turn to green	
(1mk)	(1mk)

- Observation
 Inferences

 Effervescence/bubbles/fizzing
 H+/R-COOH/H₃O⁺ present

 Reject
 Fizzling

 Hissing
 (½mk)
- c. To the third portion, **add 1g** of solid sodium hydrogen carbonate.

d. To the fourth portion, **add 5 drops** of ethanol followed by few drops of dilute sulphuric (VI)acid and warm

Observation	Inferences
Pleasant smell	R-COOH Present
Fruity smell	
Reject : Sweet smell	
(½mk)	(½mk)

THIS IS THE LAST PRINTED PAGE

