

## **TERM 2 – 2023 (JULY) MATHEMATICS PAPER 1 (121/1)** MARKING SCHEME

| NO.      | WORKING                                                                                                  | MARKS | REMARKS                                |
|----------|----------------------------------------------------------------------------------------------------------|-------|----------------------------------------|
| 1.       | $3.2 \times 1000 = 3,200 \mathrm{kg}$                                                                    |       |                                        |
|          | $8 \times 1000 = 8,000 \text{ kg}$                                                                       |       |                                        |
|          | $10 \times 1000 = 10,000 \text{ kg}$                                                                     |       |                                        |
|          |                                                                                                          |       |                                        |
|          | $3,200 = 2^7 \times 5^2$                                                                                 |       |                                        |
|          | $8,000 = 2^6 \times 5^3$                                                                                 |       |                                        |
|          | $10,000 = 2^4 \times 5^4$                                                                                | M1    | Attempt to get LCM of 3,200,           |
|          |                                                                                                          |       | 8,000 and 10,000 or equivalent         |
|          | $LCM = \frac{2^7 \times 5^4}{1000} = \frac{2^7 \times 5^4}{2^3 \times 5^3} = 2^4 \times 5$               | 3.64  | D                                      |
|          | $LCM = \frac{1000}{1000} = \frac{2^3 \times 5^3}{2^3 \times 5^3} = 2^4 \times 5$                         | M1    | Division by 1000 or equivalent         |
|          | = 80 tonnes                                                                                              | A1    |                                        |
|          | Total                                                                                                    | 3     |                                        |
| 2.       | $\frac{3}{2} = \frac{1}{2} \left( \frac{1}{2} \right) = \frac{2(0.1016 \times 10)}{2} = \frac{5.740}{2}$ | M1    | 5.748 seen                             |
|          | $\frac{3}{0.5217} = 3\left(\frac{1}{5.217} \times 10\right) = 3(0.1916 \times 10) = 5.748$               |       |                                        |
|          | 1 1                                                                                                      |       |                                        |
|          | $\sqrt{0.4036} = \sqrt{40.36 \times \frac{1}{100}} = 6.3529 \times \frac{1}{10} = 0.63529$               | M1    | 0.63529 seen                           |
|          | $\phantom{00000000000000000000000000000000000$                                                           |       |                                        |
|          | 5.748 - 0.63529 = 5.11271                                                                                | A1    | 5.11271 seen                           |
|          | Total                                                                                                    | 3     |                                        |
| 3.       | Let the gradient of the line be m                                                                        |       |                                        |
|          | $\tan 53.13010235^0 = m \Rightarrow m = 1.333333 \dots$                                                  |       |                                        |
|          | $m = \frac{4}{3}$ $5 = \frac{4}{3} \times -3 + c$                                                        | M1    | Gradient of the line seen              |
|          | 3                                                                                                        |       | 26                                     |
|          | $5 = \frac{4}{9} \times -3 + c$                                                                          |       | 1                                      |
|          | 15 = -4 + 3c                                                                                             | M1    | ✓ attempt to get c                     |
|          | 3c = 15 + 4 = 19                                                                                         |       |                                        |
|          | 19                                                                                                       |       |                                        |
|          | $c = \frac{19}{3}$                                                                                       |       |                                        |
|          | 4 19                                                                                                     |       | 4 19                                   |
|          | Hence $y = \frac{4}{3}x + \frac{19}{3}$                                                                  | A1    | $y = \frac{4}{3}x + \frac{19}{3}$ seen |
|          | Total                                                                                                    | 3     |                                        |
| 4.       | /12,500\                                                                                                 |       |                                        |
|          | (a) (i) (15,200)                                                                                         | B1    |                                        |
|          | 8,750                                                                                                    |       |                                        |
|          |                                                                                                          |       |                                        |
|          | (ii) (20 30 45)                                                                                          | B1    |                                        |
|          | 40.700                                                                                                   |       |                                        |
|          | (b) $(20 \ 30 \ 45) \begin{pmatrix} 12,500 \\ 15,200 \\ 8,750 \end{pmatrix}$                             |       |                                        |
|          | (b) (20 30 45) (15,200)                                                                                  | M1    |                                        |
|          |                                                                                                          |       |                                        |
|          | = (250,000) + (456,000) + (393,750) $= (1000,750)$                                                       |       |                                        |
|          | = (1,099,750)                                                                                            | A 1   |                                        |
| <u> </u> | = Ksh 1,099,750                                                                                          | A1    |                                        |
|          | Total                                                                                                    | 4     |                                        |



|     |                                                                                                                      |        | leacher.c                                 |
|-----|----------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|
| NO. | WORKING                                                                                                              | MARKS  | REMARKS                                   |
| 5.  | Arc length = circumference of the base                                                                               |        |                                           |
|     | $C = 2 \times \frac{22}{7} \times 10.5$                                                                              |        |                                           |
|     | ,                                                                                                                    |        |                                           |
|     | C = 66                                                                                                               |        |                                           |
|     | The slant height = radius of the arc                                                                                 | 3.61   |                                           |
|     | $66 = \frac{225}{360} \times 2 \times \frac{22}{7} \times r$                                                         | M1     |                                           |
|     | $1 66 \times 360 \times 7$                                                                                           |        |                                           |
|     | $r = \frac{30 \times 300 \times 7}{225 \times 2 \times 22}$                                                          |        |                                           |
|     | r = 16.8  cm                                                                                                         | A1     |                                           |
|     | Total                                                                                                                | 2      |                                           |
| 6.  | $\mathbf{OR} = \frac{-2}{3 + (-2)} {2 \choose -1} + \frac{3}{3 + (-2)} {-4 \choose 3}$                               | M1     | Application of ratio theorem or otherwise |
|     | $\mathbf{OR} = -2\binom{2}{-1} + 3\binom{-4}{3} = \binom{-4}{2} + \binom{-12}{9}$ $\mathbf{OR} = \binom{-16}{3}$     |        | outer wise                                |
|     | $\mathbf{OR} = \begin{pmatrix} -16 \\ 11 \end{pmatrix}$                                                              | A1     | Vector OR                                 |
|     | $ \mathbf{OR}  = \sqrt{(-16)^2 + 11^2}$                                                                              | M1     | M0 if $\sqrt{16^2 + 11^2}$ used           |
|     | $ \mathbf{OR}  = \sqrt{377} = 19.42$                                                                                 | A1     |                                           |
|     | Total                                                                                                                | 4      |                                           |
| 7.  | $15 \times 24 \times 8$                                                                                              | M1, M1 |                                           |
|     | $\frac{13}{16} \times \frac{21}{20} \times 8$                                                                        | -1/    |                                           |
|     | = 9 hours                                                                                                            | A1     |                                           |
|     | Total                                                                                                                | 3      |                                           |
| 8.  | Change in height $= 9 - 5 = 4 \text{ cm}$                                                                            |        |                                           |
|     | $\pi \times 5^2 \times 4 = \frac{4}{3} \times \pi \times r^3$ $100 = \frac{4}{3}r^3 \Rightarrow 4r^3 = 3 \times 100$ | M1     |                                           |
|     | 3                                                                                                                    | 0,1,1  | (2)                                       |
|     | $100 = \frac{4}{3}r^3 \Rightarrow 4r^3 = 3 \times 100$                                                               | M1     |                                           |
|     |                                                                                                                      |        |                                           |
|     | $r = \sqrt[3]{\frac{300}{4}} = 4.217 \text{ cm}$                                                                     | A1     |                                           |
|     | $\frac{7}{4}$ 4 $\frac{-4.217 \text{ cm}}{4}$                                                                        | AI     |                                           |
|     | Total                                                                                                                | 3      |                                           |
| 9.  | $(2n-4) \times 90^0 = 2 \times 90^0 + 150^0 (n-2)$                                                                   | M1     |                                           |
|     | 180n - 360 = 180 + 150n - 300                                                                                        |        |                                           |
|     | 180n - 150n = 180 - 300 + 360                                                                                        |        |                                           |
|     | $30n = 240 \rightarrow n = 8$                                                                                        | A1     |                                           |
|     | Hence sum= $(2 \times 8 - 4) \times 90^0 = 1080^0$                                                                   | B1     |                                           |
|     | Total                                                                                                                | 3      |                                           |
| 10. | Let the length of the train be $x$ metres long                                                                       |        |                                           |
|     | Total distance train covers to completely cross the bridge                                                           |        |                                           |
|     | = x + 50 + 120 = (x + 170) metres                                                                                    | M1     | Total distance to be covered to           |
|     | $120 \text{km/h} = \frac{120 \times 1,000}{3,600} = 33\frac{1}{3} \text{m/s}$                                        | 1411   | completely cross the bridge               |
|     |                                                                                                                      |        | 1 , 11111 1111                            |
|     | $\frac{100}{100} = \frac{x + 170}{x + 170}$                                                                          | M1     | Expression of speed                       |
|     | ${3} = {9}$                                                                                                          |        |                                           |
|     | 900 = 3(x + 170)                                                                                                     |        |                                           |
|     | $300 = x + 170 \Rightarrow x = 300 - 170$                                                                            |        |                                           |
|     | x = 130  metres                                                                                                      | A1     |                                           |
|     | Total                                                                                                                | 3      |                                           |



| NO.       WORKING       MARKS       REMARKS         11.       Commission= $48,700 - 25,000$ $= 23,700$ Let the value of sales be Ksh. A $23,700 = \frac{7.5}{100} \times A \Rightarrow A = \frac{23,700 \times 100}{7.5} = 316,000$ M1         Total Sales= $316,000 + 100,000 = \text{Ksh} 416,000$ M1, A1         12.       B1       Dropping perpendicular form centre of escribed circle to LM         B1       Location of T         Radius = $3.1 \text{cm} \pm 0.1 \text{cm}$ M1       Factorization of numerator $(a + b)(a - b)$ $(a + b)(a - b)$ M1       Factorization of numerator $(a + b)(a - b)$ $(a - 1)(a + b)$ M1       Factorization of denominator $(a + b)(a - b)$ $(a - 1)(a + b)$ M1       Factorization of denominator $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1 $(a - 1)(a + b)$ $(a - 1)(a + b)$ A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                                                                                                                                                                                                |       |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|
| NO.         WORKING         MARKS         REMARKS           11.         Commission= 48,700 – 25,000 = 23,700         B1         Commission= 48,700 – 25,000 = 23,700         M1           23,700 = $\frac{7.5}{100} \times A \Rightarrow A = \frac{23,700 \times 100}{7.5} = 316,000         M1         M1         M1, A1           Total         3         M1, A1         M1, A1           12.         B1         Dropping perpendicular form centre of escribed circle to LM           B1         Radius = 3.1cm ± 0.1cm         B1           Total         3         Factorization of numerator           (a + b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - 1)(a + b) (a - b)(a - b) (a - b)(a - b) (a - b)(a - b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                |       | Topoborooko                               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO  | WORKING                                                                                                                                                                                                                                                                        | MARKS |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                | MAKKS | KEMAKKS                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                                                                                                                                                                                                |       |                                           |
| Total Sales= 316,000 + 100,000 = Ksh 416,000    Total    B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Let the value of sales be Ksh. A                                                                                                                                                                                                                                               |       |                                           |
| Total Sales= 316,000 + 100,000 = Ksh 416,000    Total    B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $23.700 - \frac{7.5}{23.700} \times 4 \rightarrow 4 - \frac{23,700 \times 100}{23.700} - 316.000$                                                                                                                                                                              | M1    |                                           |
| Total  12.  B1 Dropping perpendicular form centre of escribed circle to LM  B1 Location of T  Total  13. $ \frac{(a+b)(a-b)}{a(a+b)-1(a+b)} $ $\frac{(a+b)(a-b)}{(a-1)(a+b)} $ $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{a-b}{a-1}$ $\frac{a-b}{a-1}$ Total  14. Rent $\rightarrow \frac{1}{10}$ Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping & remainder $= 1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder $= 2,500 + 7,500 + 12,500 = 22,500$ $\frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3}$ $= 88h 11,250$ B1 Dropping perpendicular form centre of escribed circle to LM  B1 Location of T  B1 Radius $= 3.1 \text{cm} \pm 0.1 \text{cm}$ All Factorization of numerator  Al Remainder fraction $\frac{3}{5}$ obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                                                                                                                                                                                                                                                                | 1411  |                                           |
| 12.  B1 Dropping perpendicular form centre of escribed circle to LM  B1 Location of T  Total  13. $ \begin{array}{c c}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                                                                                                                                                                                                                                                                |       |                                           |
| B1 Dropping perpendicular form centre of escribed circle to LM  B1 Location of T  B1 Radius = $3.1 \text{cm} \pm 0.1 \text{cm}$ Total  13. $\frac{(a+b)(a-b)}{a(a+b) = 1(a+b)}$ $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{a-b}{a-1}$ A1 $\frac{a-b}{a-1}$ Total  14. Rent $\rightarrow \frac{1}{10}$ Plot $\rightarrow \frac{1}{3} \times \frac{1}{90} = \frac{3}{10}$ Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder = $2.500 + 7.500 + 12.500 = 22.500$ $\frac{3}{10} = \frac{3}{10} \times 22.500 \times \frac{5}{3}$ $= 88h 11.250$ B1 Dropping perpendicular form centre of escribed circle to LM  B1 Radius = $3.1 \text{cm} \pm 0.1 \text{cm}$ A1 Factorization of numerator  A1 Factorization of denominator  M1 Factorization of denominator  M1 Remainder fraction $\frac{3}{5}$ obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12  | Total                                                                                                                                                                                                                                                                          | 3     |                                           |
| Location of T  Radius = 3.1cm $\pm$ 0.1cm  13. $(a+b)(a-b)$ $a(a+b) - 1(a+b)$ $(a+b)(a-b)$ $(a-1)(a+b)$ $a-b$ $a-b$ $a-1$ Total  14. Rent $\Rightarrow \frac{1}{10}$ Plot $\Rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping $a$ remainder $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12. | M                                                                                                                                                                                                                                                                              | В1    |                                           |
| Total  3  13. $\frac{(a+b)(a-b)}{a(a+b)-1(a+b)}$ $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{a-b}{a-1}$ 14. Rent $\rightarrow \frac{1}{10}$ Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder = $2,500 + 7,500 + 12,500 = 22,500$ $\frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3}$ = Ksh 11,250  MI  Factorization of numerator  M1  Factorization of denominator  M1  Factorization of denominator  M1  Factorization of denominator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | T                                                                                                                                                                                                                                                                              | В1    | Location of T                             |
| 13. $(a+b)(a-b)$ $a(a+b) - 1(a+b)$ $(a+b)(a-b)$ $(a-1)(a+b)$ $(a-1)(a+b)$ $(a-1)(a+b)$ $(a-1)(a+b)$ $(a-1)(a+b)$ $(a-1)(a+b)$ $(a-1)(a+b)$ $(a-1)$ $($ |     | K L                                                                                                                                                                                                                                                                            | B1    | Radius = $3.1$ cm $\pm 0.1$ cm            |
| $ \frac{a(a+b)-1(a+b)}{(a+b)(a-b)} $ $ \frac{(a+b)(a-b)}{(a-1)(a+b)} $ $ \frac{a-b}{a-1} $ A1 $ \frac{a-b}{a-1} $ A2 $ \frac{a-b}{a-1} $ A1 $ \frac{a-b}{a-1} $ A1 $ \frac{a-b}{10} $ Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder = $2,500 + 7,500 + 12,500 = 22,500$ $ \frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3} $ = Ksh 11,250  M1  Factorization of denominator  M1  Remainder fraction $\frac{3}{5}$ obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                                                                                                                                                                                                | 3     | 7                                         |
| $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{(a+b)(a-b)}{(a-1)(a+b)}$ $\frac{a-b}{a-1}$ A1  Total  14. Rent $\rightarrow \frac{1}{10}$ Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder = $2,500 + 7,500 + 12,500 = 22,500$ $\frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3}$ = Ksh 11,250  M1 Factorization of denominator  M1 Remainder fraction $\frac{3}{5}$ obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13. |                                                                                                                                                                                                                                                                                | M1    | Factorization of numerator                |
| Total  Total  3  14. Rent $\rightarrow \frac{1}{10}$ Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder = $2,500 + 7,500 + 12,500 = 22,500$ $\frac{3}{5} \rightarrow 22,500$ $\frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3}$ = Ksh 11,250  M1  Remainder fraction $\frac{3}{5}$ obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | $\frac{(a+b)-1(a+b)}{(a+b)(a-b)}$ $\frac{(a+b)(a-b)}{(a+b)(a-b)}$                                                                                                                                                                                                              | M1    | Factorization of denominator              |
| Total  14. Rent $\rightarrow \frac{1}{10}$ Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$ Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$ Also mother, shopping and remainder = $2,500 + 7,500 + 12,500 = 22,500$ $\frac{3}{5} \rightarrow 22,500$ $\frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3}$ = Ksh 11,250  Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                                                                                                                                                                                                                                                | A1    |                                           |
| Rent $\rightarrow \frac{1}{10}$<br>Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$<br>Mother, shopping & remainder = $1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$<br>Also mother, shopping and remainder = $2,500 + 7,500 + 12,500 = 22,500$<br>$\frac{3}{5} \rightarrow 22,500$<br>$\frac{3}{10} = \frac{3}{10} \times 22,500 \times \frac{5}{3}$<br>= Ksh 11,250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                                                                                                                                                                                                                                                                                | 3     |                                           |
| = Ksh  11,250 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14. | Rent $\rightarrow \frac{1}{10}$<br>Plot $\rightarrow \frac{1}{3} \times \frac{9}{10} = \frac{3}{10}$<br>Mother, shopping & remainder $= 1 - \left(\frac{1}{10} + \frac{3}{10}\right) = \frac{3}{5}$<br>Also mother, shopping and remainder $= 2.500 + 7.500 + 12.500 = 22.500$ |       | Remainder fraction $\frac{3}{5}$ obtained |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                | A1    |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                                                                                                                                                                                                |       |                                           |







| NO  | WODVING                                                                 | MADES | DEMADIC            |
|-----|-------------------------------------------------------------------------|-------|--------------------|
| NO. | WORKING                                                                 | MARKS | REMARKS            |
| 17. | (a) Volume                                                              | 3.61  | X 1 C              |
|     | $= 225 \times 0.4 \times 1,000$                                         | M1    | Volume of concrete |
|     | $= 90,000 \text{ cm}^3$                                                 |       |                    |
|     | $Mass = \frac{90,000 \times 2.4}{1000000000000000000000000000000000000$ | 3.54  |                    |
|     | 1,000                                                                   | M1    | Mass of court      |
|     | = 216 tonnes                                                            |       | _                  |
|     | Cement $\rightarrow \frac{1}{10} \times 216$                            | M1    | Mass of cement     |
|     | Cement $\rightarrow \frac{10}{10} \times 216$                           |       |                    |
|     | = 21.6 tonnes                                                           | A1    |                    |
|     |                                                                         |       |                    |
|     | (b) Number of bags                                                      |       |                    |
|     | $21.6 \times 1,000$                                                     |       |                    |
|     | =                                                                       | B1    |                    |
|     | = 432 bags                                                              | D1    |                    |
|     | (c) (i) Mass of ballast                                                 | M1    |                    |
|     | 4 21 6 000                                                              | 1V1 1 |                    |
|     | $=\frac{4}{10}\times 216,000$                                           |       |                    |
|     | $=864,000 \mathrm{kg}$                                                  | A1    |                    |
|     |                                                                         |       |                    |
|     | (ii) Number of trips                                                    |       |                    |
|     | 864,000                                                                 | M1    |                    |
|     | $={25,000}$                                                             | 7 /   |                    |
|     | $= 34.56 \approx 35 \text{ trips}$                                      | \ /   | 7                  |
|     | o no o o o o o o                                                        |       | /                  |
|     | Cost                                                                    |       |                    |
|     | $= 35 \times 43,500$                                                    | M1    |                    |
|     | = 55 × 45,500<br>= Ksh. 1,522,500                                       | A1    |                    |
|     | Total                                                                   | 10    |                    |
|     | 10001                                                                   | 10    |                    |





| NO. WORKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MARKS    | REMARKS                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------|
| 19. (a) M – Translation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1       | Translation                                                     |
| Consider the position vectors of A and A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                                                 |
| Let the position vector be T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                                                 |
| $T = {\binom{-5}{7}} - {\binom{2}{1}} = {\binom{-7}{6}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.61 4.1 | <b>T</b> 7 ,                                                    |
| (b) Successive transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1, A1   | Vector                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1       | Rotation                                                        |
| (c) $A'''(7,7), B'''(4,6), C'''(5,3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D1       | ΔA"B"C" drawn                                                   |
| фу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1       | $\Delta A^{\prime\prime}B^{\prime\prime}C^{\prime\prime}$ drawn |
| A' 7 B'''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1       | Enlargement                                                     |
| C' 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1       | ΔA′′′B′′′C′′′ drawn                                             |
| B' A propried to the second of | B1       | Coordinates                                                     |
| 3 property and the second seco |          |                                                                 |
| 2 2 A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                 |
| × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                                                 |
| -7 -6 -5 -43 -2 -7 -1 0 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                                                 |
| -2 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                 |
| Box - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                 |
| Az-river 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                 |
| × -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ke       |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                                 |
| (d) (i) Directly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1       |                                                                 |
| (ii) Oppositely/Indirectly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1       |                                                                 |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10       |                                                                 |









| NO. | WORKING                                                           | MARKS  | REMARKS         |
|-----|-------------------------------------------------------------------|--------|-----------------|
| 21. | (a) Sketch                                                        |        |                 |
|     | (18 - 2x) cm x cm                                                 |        |                 |
|     | x cm                                                              | B1     | ✓ sketch        |
|     |                                                                   | Di     | SKeten          |
|     | (18 - 2x)  cm                                                     |        |                 |
|     |                                                                   | B1     | ✓ dimensions in |
|     | (18 - 2r) cm (18 - 2r) cm                                         |        | terms of x      |
|     |                                                                   |        |                 |
|     | (b) (i) height of the box                                         |        |                 |
|     | $V = x(18 - 2x)^2$                                                | 3.54   |                 |
|     | $V = x(10^{-2x})$ $V = x(324 - 72x + 4x^2) = 324x - 72x^2 + 4x^3$ | M1     |                 |
|     | $V = 4x^3 - 72x^2 + 324x$ $V = 4x^3 - 72x^2 + 324x$               |        |                 |
|     |                                                                   |        |                 |
|     | $\frac{dV}{dx} = 12x^2 - 144x + 324$                              |        |                 |
|     | For maximum volume                                                |        |                 |
|     | $12x^2 - 144x + 324 = 0$                                          | M1     |                 |
|     | $x^2 - 12x + 27 = 0$                                              |        |                 |
|     | $x^2 - 3x - 9x + 27 = 0$                                          |        |                 |
|     | x(x-3) - 9(x-3) = 0                                               |        |                 |
|     | (x-9)(x-3) = 0                                                    |        |                 |
|     | Either $x = 9$ or $x = 3$                                         | A1     |                 |
|     | Seco <mark>nd</mark> d <mark>er</mark> ivative                    | A (( ) |                 |
|     | $\frac{d^2V}{dx^2} = 24x - 144 = x - 6$                           |        |                 |
|     |                                                                   |        |                 |
|     | At $x = 9$                                                        |        |                 |
|     | $\frac{d^2V}{dx^2} = 9 - 6 = 3 \text{ (positive)}$                |        |                 |
|     | ****                                                              |        |                 |
|     | Volume will be minimum at $x = 9$                                 |        |                 |
|     | At $x = 3$                                                        |        |                 |
|     | $\frac{d^2V}{dx^2} = 3 - 6 = -3 \text{ (negative)}$               |        |                 |
|     | $ax^2$ Volume will be maximum at $x = 3$                          | D1     |                 |
|     | volume will be maximum at $x = 3$                                 | B1     |                 |
|     | (ii) maximum volume                                               |        |                 |
|     | $V = (18 - 2 \times 3)(18 - 2 \times 3)(3)$                       |        |                 |
|     | $V = 12 \times 12 \times 3 = 432 \text{ cm}^3$                    | M1     |                 |
|     |                                                                   | A1     |                 |
|     | (c) GCD of 12, 12 and $3 = 3$                                     |        |                 |
|     | Least number of cubes                                             |        |                 |
|     | _ 432                                                             |        |                 |
|     | $=\frac{3\times3\times3}{3\times3}$                               | M1     |                 |
|     | = 16 cubes                                                        | A1     |                 |
|     | Total                                                             | 10     |                 |



| NO. WORKING                                                                                     | MARKS  | REMARKS               |
|-------------------------------------------------------------------------------------------------|--------|-----------------------|
| 22. (a) Capacity of the pool                                                                    |        |                       |
| Cross sectional area                                                                            |        |                       |
| 0                                                                                               |        |                       |
| <u> </u>                                                                                        |        |                       |
| $\overline{\Lambda}$                                                                            |        |                       |
|                                                                                                 |        |                       |
| 50 cm                                                                                           |        |                       |
| $A \qquad B \qquad 2.5 \text{ m}$                                                               |        |                       |
| 2.5 m                                                                                           |        |                       |
|                                                                                                 |        |                       |
|                                                                                                 |        |                       |
|                                                                                                 |        |                       |
| <u></u>                                                                                         |        |                       |
| $A = \frac{1}{2} \times 8(0.5 + 2.5) = 12 \text{m}^3$                                           | M1     | Cross-sectional area  |
| $B = 2 \times 2.5 = 5 \text{m}^3$                                                               | 1,11   |                       |
| $B = 2 \times 2.5 = 5 \text{m}^3$<br>Total = 12 + 5 = 17m <sup>3</sup>                          |        |                       |
| $10 \text{tal} = 12 + 5 = 1 / \text{m}^3$                                                       |        |                       |
| Capacity = $17 \times 20 \times 1000$                                                           | M1, M1 | Volume, multiply by   |
| Supurity 17 11 20 11 1000                                                                       |        | 1000                  |
| = 340,000 litres                                                                                | A1     | Capacity in litres    |
|                                                                                                 |        |                       |
| (b) Volume drained in 1 minute                                                                  |        |                       |
| $V = \frac{22}{7} \times 20^2 \times 35 + \frac{22}{7} \times 25^2 \times 42$                   | 1 /    |                       |
| $V = \frac{7}{7} \times 20^{\circ} \times 33 + \frac{7}{7} \times 23^{\circ} \times 42^{\circ}$ | M1     | Volume of both        |
| =44,000+82,500                                                                                  | 2.61   | A 1111                |
|                                                                                                 | M1     | Addition              |
| = 126,50 <mark>0 cm<sup>3</sup></mark>                                                          | A1     |                       |
| (a) Compaitry dualized in 1 majorate has A and D to another.                                    |        |                       |
| (c) Capacity drained in 1 minute by A and B together 126,500                                    | M1     | Volume or capacity in |
|                                                                                                 | 1411   | 1 minute for A and B  |
| 1000<br>= 126.5 litres                                                                          |        | 1 minute for 71 and B |
| — 120.3 II(I es                                                                                 |        |                       |
| Time to drain                                                                                   |        |                       |
| 340,000                                                                                         |        |                       |
| $=\frac{7}{126.5\times60}$                                                                      | M1     |                       |
| = 44.796 hours                                                                                  |        |                       |
| ≅ 45 hours                                                                                      | A1     |                       |
| Total                                                                                           | 10     |                       |



| NO. | WORKING                                                                                                                | MARKS    | REMARKS                                   |
|-----|------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|
| 23. | F                                                                                                                      |          |                                           |
|     | T  M  S  S  S  S  S  S  S  S  S  S  S  S                                                                               |          |                                           |
|     | A 5 m B                                                                                                                |          |                                           |
|     | (a) $h = \sqrt{3^2 - 2.5^2}$<br>h = 1.658  cm                                                                          | M1       | Pythagorean expression for height of ΔGHJ |
|     | height of tent = $3.5 + 1.658$<br>= $5.158 \approx 5.16$ m                                                             | M1<br>A1 | Sum of both heights                       |
|     | (b) $CZ = \sqrt{4^2 + 2.5^2}$                                                                                          | M1       | CZ obtained                               |
|     | = 4.717 m<br>Consider $\Delta TZC$ and let the angle of elevation be $\theta$                                          | 1/       | 7                                         |
|     | 5.16                                                                                                                   | .ke      |                                           |
|     | $\tan \theta = \frac{5.16}{4.717}$                                                                                     | M1       |                                           |
|     | $\theta = \tan^{-1}\left(\frac{5.16}{4.717}\right) \Rightarrow \theta = 47.57^{0}$                                     | A1       |                                           |
|     | (c) Consider the figure below $\tan \alpha = \frac{2.5}{4}$                                                            | M1       |                                           |
|     | $\alpha = \tan^{-1}\left(\frac{2.5}{4}\right) = 32.00^{0}$ Obtuse angle $= 180^{0} - 32^{0} = 148^{0}$ B  C            | A1       |                                           |
|     | (d) Volume                                                                                                             | M1       |                                           |
|     | $= \left\{ (5 \times 3.5) + \left( \frac{1}{2} \times 1.658 \times 5 \right) \right\} \times 8$ $= 173.16 \text{ m}^3$ | A1       |                                           |
|     | = 1/3.16 m <sup>2</sup> Total                                                                                          | 10       |                                           |



|     | Livianium                                                                         | T =   |         |
|-----|-----------------------------------------------------------------------------------|-------|---------|
| NO. | WORKING                                                                           | MARKS | REMARKS |
| 24. | (a) (i) Consider ΔOQS                                                             |       |         |
|     | $\angle OQS = \angle OSQ = 46^{\circ}$ - base angles of isosceles $\triangle OQS$ |       |         |
|     | are equal                                                                         |       |         |
|     | $\angle QOS = 180^{0} - (2 \times 46^{0}) = 88^{0}$                               | B1    |         |
|     | Sum of angles in $\triangle OQS$ is $180^{\circ}$                                 | B1    |         |
|     | (ii) $\angle STQ = 90^{\circ} - 46^{\circ} = 44^{\circ}$                          | B1    |         |
|     | Diameter TQ subtends 90° at S                                                     | B1    |         |
|     | Zimmion 1 Quantum 3 V m s                                                         |       |         |
|     | (iii) $\angle QOS$ reflex = $360^{\circ} - 88^{\circ} = 272^{\circ}$              | B1    |         |
|     | $\angle QRS = \frac{1}{2} \times 272^0 = 136^0$                                   | B1    |         |
|     | angle at the centre twice angle at the circumference                              | B1    |         |
|     | angle at the centre twice angle at the encumerence                                |       |         |
|     | (b) Consider ΔQTS                                                                 |       |         |
|     | $\cos 46^0 = \frac{QS}{Q}$                                                        | M1    |         |
|     | )                                                                                 |       |         |
|     | $QS = 9 \cos 46 = 6.252 \text{ cm}$                                               |       |         |
|     | Area = $\frac{1}{2} \times 6.252 \times 9 \cos 46^{\circ}$                        | M1    |         |
|     | $= 19.54 \text{ cm}^2$                                                            | Al    |         |
|     |                                                                                   |       |         |
|     | Total                                                                             | 10    |         |

