KABARAK

UNIVERSITY

UNIVERSITY EXAMINATIONS

2009/2010 ACADEMIC YEAR

FOR THE DEGREE OF BACHELOR OF BUSINESS MANAGEMENT

& INFORMATION TECHNOLOGY

COURSE CODE: BMIT 416

- COURSE TITLE: IT SECURITY, AUDIT AND ETHICS
- STREAM: Y4S1
- DAY: MONDAY
- TIME: 2.00 5.00 P.M.
- DATE: 22/03/2010

INSTRUCTIONS:

- SECTION A : Answer Question 1 (COMPULSORY)
- > SECTION B: Answer any **three** questions.

PLEASE TURN OVER

SECTION A (Compulsory) Answer ALL Questions in this section

QUESTION ONE (40 MARKS)

a)

i).	What is ARP spoofing	[2 marks]
ii).	Outline any FOUR symptoms of ARP spoofing	[2 marks]

- b)
- i). State Kerckhoff's principle. Explain briefly why a cryptosystem designed by someone who follows this principle is likely to be stronger than one designed by someone who does not. [5 marks]
- ii). Explain the main drawback of the onetime pad cryptosystem? [4 marks]
- c) Consider the following hypothetical Kerberos simple authenticated dialogue between a client C requesting accesses to a server V

 $C \longrightarrow AS: ||D_c|| ||P_c|| ||D_v|$ $AS \longrightarrow C: \text{ Ticket}$ $C \longrightarrow V: ||D_c|| || \text{ Ticket}$ $\text{Ticket} = E_{kv} [||D_c|| ||AD_c|| ||D_v|]$

Where C = Client, AS is authentication server, V is server, ID_c is identifier of user on C, ID_v is identifier of V, P_c is password of user on C, AD_c is network address of C, K_v is secret encryption key shared by AS and V and \parallel is concatenation

i). Explain the events in this dialogue that leads to V granting the service requested by C [6 marks]

[8 marks]

- ii). Outline the problem with this authentication technique stating any threats probable [3 marks]
- d) Explain the following DoS attacks.
 - i). Buffer overflow
 - ii). SYN Attack
 - iii). Teardrop Attack
 - iv). Smurf

e) Company Y has its web application and database servers placed in a DMZ, protected by a network firewall. Each packet sent/received from Internet to/from DMZ is filtered by the firewall according the following ruleset:

Order	Protocol	Source Host	Source Port	Destination Host	Destination Port	Permit/Deny
1	SMTP	MAIL_1	25	Any	Any	Permit
2	Any	Any	Any	GENITALIA	Any	Deny
3	SMTP	Any	Any	Any	25	Permit
4	Any	Any	Any	Any	Any	Deny

Rules are processed from top to bottom. When a match occurs rest of the rules is discarded.

• \	_						
i) Ex	nlain the	implications	of each	of these rule sets	16	marks]
Ξ,	,. LA	pium me	mpneutons	or cuci	of these fulle sets	[0	, markoj

- ii). Explain the current security risk of the servers in this DMZ taking the rule set into account? [2 Marks]
- iii). How could you eliminate these risk? [2 Marks]

SECTION B Answer Any THREE Questions in this section

QUESTION TWO (20 MARKS)

- a) Assuming you can do 2²⁰ encryptions per second and the key size is 40 bits, how long would a brute force attack take? Give a scenario where this would be practical and another where it wouldn't. What happens if you double the key size? [8 marks]
- b) You have intercepted a message encrytped with an affine cipher. The ciphertext starts with BBDJ and you know the plaintext starts with oops. Find the key. [8 marks]
- c) Consider a language with three letters, a, b, and c, with frequencies .6, .3, and .1. Suppose that a long message (1000 characters) in this language is encrypted with a Vign`ere cipher and we plan to break it using a index of coincidence attack. About how big is the largest index of coincidence we are likely to see? [5 marks]

QUESTION THREE (20 MARKS)

- a) Explain three types of attacks that can be made on packet filtering routers and explain the appropriate counter measures for each [12 marks]
- b) Use the extended Euclidean algorithm to compute the greatest common divisor d of 654 and 123 and to find integers m and n such that 654m + 123n = d. [8 marks]

QUESTION FOUR (20 MARKS)

Outline the activities that take place during the following stages of a Kerberos authentication process

i).	User Client-based Logon	[3 marks]
ii).	Client Authentication	[6 marks]
iii).	Client Service Authorization	[5 marks]
iv).	Client Service Request	[6 marks]

QUESTION FIVE (20 MARKS)

a) Modern web browsers provide a number of features that help to protect your privacy and make your computer and your personally identifiable information more secure.
Explain the role of Privacy and security features in a web browser [2 marks]

- i. Outline THREE categories of privacy features included in Internet Explorer [3 marks]
- ii. Outline THREE categories of security features included in Internet Explorer

[3 marks]

- b)
- i. You are a system administrator of a secondary school; one of the internet policy Statements states '*students should not view Web sites that contain violent or sexual content*'. State the feature of internet explorer that you might use to enforce this policy and explain how you can access it and use it to achieve the desired results [6 marks]
- ii. Outline SIX activities that can be performed using the feature stated above to control access to the internet [6 marks]