

SOUTH EASTERN KENYA UNIVERSITY

UNIVERSITY EXAMINATIONS 2016/2017

FIRST SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS), BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE (ECONOMICS AND STATISTICS) BACHELOR OF ECONOMICS.

SMA 206: INTRODUCTION TO ANALYSIS

DATE: 8TH DECEMBER, 2016

TIME: 4.00-6.00PM

INSTRUCTIONS

Answer Question One and Any Other Two Questions

QUESTIONS ONE: 30 MARKS (COMPULSORY)

- a) given the following typing sets;
 - : The set of Natural number
 - : The set of integers
 - : The set of Rational Numbers
 - : The set of Irrational Numbers
 - : The set of Real numbers
 - i. Starting with Real numbers construct a chart/ diagram to depict the relationships of set inclusion among the above sets. (3 marks)
 - ii. Identify with reasons which of the above sets have a field structure (2 marks)
- b) Show that every open interval in R is an open set. (4 marks)

c) State the completeness axiom for , the set of real numbers.

(4 marks)

d) By computing lim sup and lim inf determine the convergence or divergence of the sequence.

- (e). Show that the $\lim_{x\to 0} \left(\frac{3x+2}{x}\right)$ is schizophrenic near x = 0 (4marks)
- (f). State the squeeze theorem for sequences (3 marks)
- (g). Explain what is meant by unbounded above and unbounded below of the extended reals and describe the order relationship between its two fictitious points and any real number.
 (4 marks)
 - (h). If n is a positive integer, then for all real values of x,

prove that
$$\frac{d}{dx}[x^n] = nx^{n-1}$$
 (4marks)

QUESTION 2 (Optional) 20 MARKS

a)	Give a general definition of neighbouhood of a point R (the set of real numbers). Using		
	relevant examples.		(3 marks)
b)) Let and T be neighbourhood of a point . Prove that the intersection is also a neighbourhood		
	of .		(7 marks)
c)	Using relevant examples define a limit point of a set.		(3 marks)
d)	Show with reasons that the set:	is closed but not open.	(7marks)

QUESTION 3 (Optional) 20 MARKS

(a). Use the numerical computation to determine the value of

$$\lim_{x \to 4} \left[\frac{1}{(4x-2)} \right]$$
 (6marks)

(b). Let
$$f(x) = \lim_{x \to 2} \left[\frac{-3x}{x^2 - 4x + 4} \right]$$
, by illustration, find its limit. (8 marks)

(c). Prove that the image of a countable set under any map is countable. (6 marks)

QUESTION 4 (Optional) 20 MARKS

a) Distinguish clearly between a sequence and a series. (4 marks)

b)	Identify the criterion for convergence of a sequence hence show that	the sequence	
	converges to 3 from first principles (by definition).		
c)	Give the definition of the derivative of a function.	(3 marks)	
d)	Using (d) above, show that if $f(x)$ is differentiable at $x = c$, then is continuous		
	at $x = c$, i.e differentiability implies continuity.	(8 marks)	

QUESTION 5 (Optional) 20 MARKS

(a). Prove that the rational number system is not complete	
(b). Prove that if r and s are real numbers with $r < s$, then there is a rational	number $\frac{m}{n}$
such that $r < \frac{m}{n} < s$.	(8 marks)
(c). Prove that every convergent sequence is cauchy	(5 marks)