

SECOND YEAR EXAMINATION FOR THE AWARD OF THE DEGREE OF BACHELOR OF MATHEMATICS AND ACTUARIAL SCIENCE FIRST SEMESTER 2017/2018 (MAY - AUGUST, 2017)

MATH 272: OPERATIONS RESEARCH I

STREAM: Y2S1

TIME: 2 HOURS

DAY: TUESDAY, 9:00-11:00 AM

DATE: 12/09/2017

INSTRUCTIONS

1. Do not write anything on this question Paper.

2. Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

1.

- a. Dorian makes luxury cars and jeeps for high-income men and women. It wishes to advertise with 1 minute spots in comedy shows and football games. Each comedy spot costs \$50K and is seen by 7M high-income women and 2M high-income men. Each football spot costs \$100K and is seen by 2M high-income women and 12M high-income men. How can Dorian reach 28M high-income women and 24M high-income men at the least cost? (6 marks)
- b. Use simplex algorithm to solve

$$Max z = 50x_1 + 80x_2$$

 $s.t 2x_1 + 4x_2 \le 64$
 $6x_1 + 8x_2 \le 168$
 $x_1, x_2 \ge 0$

(6 marks)

c. Explain the types of mathematical models used in O.R
 d. Explain the methodologies used in operations research (6 marks)

e. The table below show the daily demand of product X in a given shop in Kisii

Daily demand (number):	0	1 10	20	30	40	50
Probability:	0.01	0.10	0.17	0.54	0.16	0.02

Use the following sequence of random numbers to simulate the demand for next 7

Random numbers: 22, 11, 65, 76, 05, 45, 90.

(6 marks)

QUESTION TWO (20 MARKS)

2.

- a. A farmer owns 100 acre farm and plans to plant at most three crops. The seed for crops A, B and C costs \$40, \$20 and \$20 per acre respectively, A maximum of \$3,200 can be spent on buying seeds. Crops A,B and C requires 1.2 and 3 workdays per acre respectively and there is a maximum of 160 work days available. If the farmer can make a profit of \$100 per acre on crop A, \$300 on crop B and \$200 on crop C, how many acres of each crop should the farmer plant so as to maximize profit. Use simplex method.
 (10 marks)
- b. The EAC Ltd transports goods from three firms to three warehouses and the cost of transportation is shown in the cells below in pounds per ton.

TO ROM	, A	В	c	Supply
P	13	14	12	800
Q	<u>[19</u>] [15	9	800
R	21	[17]	[11	400
Demand	1000	400	600	

Using the table above find the initial solution and estimate the total cost using

North-west corner method

(5 marks)

ii. Vogel Approximation method

(5 marks)

QUESTION THREE (20 MARKS)

1

a. Company wants to assign each flight officer to a captain pilot according to these evaluations. Showing the steps clearly, determine possible flight crews. (10 marks)

	FO1	FO2	FO3	FO4
CP1	2	4	6	10
CP2	2	12	6	5
CP3	7	8	3	+ 0
CP4	14	15	1 7	13

b. Define the following terms as used in linear programming:

i.	Simulation	(2 marks
li.	Linear programming	(2 marks)
iii.	Feasible solution	(2 marks)
iv.	Slack variable	(2 marks)
v .	Constrains	(2 marks)

QUESTION FOUR (20 MARKS)

4.

a. Find the feasible solution using the graphical method given

Max
$$z = 3x_1 + 2x_2$$

 $s.t.2x_1 + x_2 \le 100$ (Finis Bing constraint)
 $x_1 + x_2 \le 80$ (Carpentry constraint)
 $x_1 \le 40$ (Demand constraint)
 $x_1, x_2 \ge 0$ (Sign restrictions)

(16 marks)

b. Define:

a. Surplus variable,
b. Objective function
(2 marks)
(2 marks)

QUESTION FIVE (20 MARKS)

5.

a. Discuss the simplex algorithm

(10 marks)

b. The Africa Cup of Nations has four football games on a particular night. Soccer officials want to assign four referees to the four games in a way that will minimize the total distance travelled by the referees. The distances in Kilometres for each referee to each game location is shown below (10 marks)

Referees	Games Sites			
	Rai	Ata	Duri	Clim
A	90	180	210	160
В	70	130	100	200
C	105	140	175	170
D	65	105	80	120

Use the assignment model, showing the steps in each case, to find the total distance in a way that will minimize the total distance travelled by the referees.