

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya.

Tel: 020-2069349, 061-2309217. 064-30320 Cell phone: +254 712524293, +254 789151411

Fax: 064-30321

Website: www.must.ac.ke Email: info@mucst.ac.ke

University Examinations 2013/2014

FIRST YEAR, FIRST SEMESTER EXAMINATION FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED STATISTICS

STA 3106: TIME SERIES ANALYSIS

DATE: DECEMBER 2013

TIME: 3HOURS

INSTRUCTIONS: Answer questions **one** and any other **two** questions

QUESTION ONE - (30 MARKS)

- a) Consider a white noise model
 - $x_t = e_t; \quad e_t \sim iidN(0, \sigma_e^2)$ i. Obtain $E(x_t)$. (2 Marks)
 - ii. Autocorrelation function s_j ; j = 0, 1, 2, (5 Marks)
- b) For each of the following ARMA processes check for stationarity and or invertibility properties;
 - i. $x_t = -1.3x_{t-1} + 0.4e_{t-2} + e_{t-1} + e_t;$ (4 Marks)
 - ii. $x_t = 0.5x_{t-1} \pm 1.3e_{t-1} + 0.2e_{t-2} + e_t;$ (4 Marks)
- c) i) Define stationarity in the weak sense. (2 Marks)
 ii) Using recursive substitution, express an AR (1) process interms of *MA*(∞) process.

(3 Marks)

- iii) Hence show that the AR(1) process is weakly stationary. (6 Marks)
- d) obtain the second order differential data for Y_t and the differenced data on the same axis and comment on the role of differencing

Time t	1	2	3	4	5	6	7	8	9	10
Data Y_t	4.1	3.5	1.6	4.1	5.3	4.9	5.5	3.6	3.1	2.8

(4 Marks)

QUESTION TWO (20 MARKS)

	U		1	2	U							
Year	1992				1993				1994			
Quarter	Mar	Jun	Sep	Dec	Mar	Jun	Sep	Dec	Mar	Jun	Sep	Dec
Sales Y_t	9.9	9.5	8.3	8.7	9.9	8.8	7.0	7.9	9.3	7.5	6.9	6.9

a) The following data shows quarterly averages of sales of a given product.

- i. Assuming an additive model, obtain the deseasonalized data (Z_t) . Hence,
- ii. Plot Y_t and Z_t on the same axis. Comment. (10 Marks)
- b) Using the Lag Operator approach, transform an AR(1) process to an $MA(\infty)$ process and hence, show that;

$$R(1) = cov(x_t, x_{t-1}) = \frac{\phi}{1-\phi^2}\sigma_e^2$$

Assume that $e_t \sim iidN(0, \sigma_e^2)$. (10 Marks)

QUESTION THREE (20 MARKS)

- a) Consider the time series process
 - $x_t = e_t + \beta e_{t-1}; e_t \sim iidN(0, \sigma_e^2)$
 - i. Obtain $E(x_t)$, $var(x_t)$, $cov(x_t, x_{t+h})$ for h = 0,1,2 lags.
 - ii. Hence obtain the correllogram plot of the time series process. (10 Marks)
- b) i) Show that the $MA(\infty)$ process below is non-stationarity.

 $x_t = e_t + C(e_{t-1} + e_{t-2} + ...; C = constant$

ii) show that $Y_t = \nabla x_t$ for the process in (i) above is however weakly stationary. Obtain the autocorrelation function of Y_t . (10 Marks)

QUESTION FOUR (20 MARKS)

a) A time series process is given by

$$m_t = \sum_{k=0}^{p} c_k t^k; t = 0, \pm, \pm 2, \dots, c_k = cons \tan ts$$
 show that the first order difference of m_t is a

polynomial degree (p-1) in t and hence that

$$\nabla^{p+1}m_t = 0 \tag{6 Marks}$$

- b) Define the difference operator $\nabla_{12}x_t = x_t x_{t-12} Y_t$ is a stationary time series process, mean zero.
 - i. If $x_t = a + bt + s_t + Y_t$; s_t = seasonal component with period d= 12, show that $\nabla \nabla_{12} x_t = (1 - B)(1 - B^{12})x_t$ is stationary. (8 Marks)
 - ii. $x_t = (a + bt) + s_t + Y_{t;}s_t$ = seasonal component with period d = 12, show that $\nabla_{12}^2 x_t = (1 - B^{12})(1 - B^{12})x_t$ is stationary. (6 Marks)

QUESTION FIVE (20 MARKS)

a) Consider $\{x_t\}$, stationary time series process with $E(x_t) = 0$ and $R_x(h) = cov(x_t, x_{t+h})$. Define $f_x(\lambda)$ to be the power spectrum of x_t .

Show that
$$Y_t = \sum_{j=\infty}^{\infty} \alpha_j x_{t-j}$$
; $\alpha_j = cons \tan ts$ has a power spectrum defined by
 $f_y(\lambda) = f_x(\lambda) \left| \sum_{k=\infty}^{\infty} \alpha_k e^{e^{-i\lambda k}} \right|^2$. (14 Marks)

b) Hence from (a), show that $x_t = e_t + \beta e_{t-1}$ has a power spectrum defined by $f_y(\lambda) = \frac{\sigma^2}{2\pi} (1 + \beta^2 + 2\beta \cos \lambda)$

Hint: the power spectrum of a white noise is given by
$$f_e(\lambda) = \frac{\sigma^2}{2\pi}$$
. (6 Marks)