

MASENO UNIVERSITY UNIVERSITY EXAMINATIONS 2016/2017

FOURTH YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE WITH INFORMATION **TECHNOLOGY**

MAIN CAMPUS

SPH 402: STATISTICAL MECHANICS

Date: 3rd December, 2016

Time: 12.00 - 3.00 pm

INSTRUCTIONS:

 Answer question ONE (Compulsory) and any TWO questions in SECTION B.

ISO 9001:2008 CERTIFIED

MASENO UNIVERSITY

UNIVERSITY EXAMINATIONS FOR 2016/2017 ACADEMIC YEAR
FOURTH YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE OF
BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION SCIENCE
WITH INFORMATION TECHNOLOGY (MAIN CAMPUS)

SPH 402: STATISTICAL MECHANICS SEPTEMBER-DECEMBER, 2016 SESSION

INSTRUCTION

Answer question I(Compulsory) and any other TWO questions in section B.

SECTION A QUESTION 1 (30 MARKS)

(a) Define the following terms as used in Statistic	cal Mechanics
(i) Phase space	(1 mark)
(ii) Density of states	(1 mark
(iii) Statistical weight	(1 mark
(iv) Degree of freedom	(1 mark)

(b) The Hamiltonian of a physical system in a phase space is defined by

 $H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2q^2$, where the symbols have their usual meanings. Determine the

Hamilton's canonical equation of motion.

(3 marks)

- (c) State TWO properties of particles obeying Bose-Einstein statistics, hence derive the equation for determining the total number of microstates within this distribution. (4 marks)
- (d) Calculate the statistical weight of a macrostate consisting of 5 particles obeying Maxwell-Boltzmann distribution and two energy levels 1 and 2 such that level 1 has 2 particles and a degeneracy of 2 while level 2 has a degeneracy of 3.

(3 marks)

(e) Distinguish between a microstate and a macrostate. (2 marks)

- (f) Starting with Gibb's free energy, G = F + PV, derive expressions for entropy, volume and chemical potential. (3 marks)
- (g) Show that the conditions for equilibrium of a system in a heat bath can be derived from the inequality dU_A −T_RdS_A + P_RdV_A − μ_RdN_A ≤ 0 where the symbols have their usual meanings.
 (3 marks)
- (h) Derive the equation for the partition function of a spin-¹/₂ paramagnetic system.
 (3 marks)
- (i) Black body radiation in a box of volume V and at temperature T has internal energy $U = \sigma V T^4$ and pressure $P = \frac{1}{3} \sigma T^4$ where σ is the Stefan-Boltzmann

constant. Determine the Helmholtz free energy in terms of U. (3 marks)

(j) Explain the formation of Bose-Einstein condensate. (2 marks)

SECTION B

Answer any TWO questions in this section

QUESTION 2 (20 MARKS)

- (a) Starting with an example of a Fermi sphere, derive the equation for density of states.
 (10 marks)
- (b) Derive Hamilton's equations of motion in a phase space described by generalized position (q) and momentum (p) coordinates. (10 marks)

QUESTION 3 (20 MARKS)

(a) (i) Distinguish between a canonical ensemble and grand canonical ensemble.

(2 marks)

19

- (ii) Show that the average internal energy in a canonical ensemble is given by $\overline{E} = \frac{1}{Z} \sum_{i} \varepsilon_{i} e^{-\beta c_{i}} \text{ where the symbols have their usual meanings.} \qquad \textbf{(3 marks)}$
- (b) Show that the Stirling's approximation for a very large number of particles, N, is given by ln N!= N ln N N.
 (5 marks)
- (c) Determine the conditions under which a composite isolated system C resulting
 from interaction of two isolated systems A and B attains thermodynamic
 equilibrium. (10marks)

QUESTION 4 (20 MARKS)

(a) Show that the Fermi-Dirac distribution function is given by $f_{FD} = \left(e^{\left(\frac{\delta_{c}-\mu}{k_{g}T}\right)}+1\right)^{-1}$.

(10 marks)

(b) Show that the entropy, S, of a thermodynamic system is given in terms of the Boltzmann constant, k_B and statistical weight, Ω , in the form $S = k_B \ln \Omega$.

(10 marks)

QUESTION 5 (20 MARKS)

(a) Derive the equation of the energy density of electromagnetic radiation from a black body in the form

$$u(v,T)dv = \frac{8\pi\hbar v^3}{c^3 \left(e^{\left(\frac{\hbar v}{k_B T}\right)} - 1\right)} dv \quad \text{where the symbols have usual meanings.}$$

(12 marks)

(b) Show that the value of wavelength, λ , for which $u(\lambda, T)$ obtained in 4 (a) above is maximum is given by $\lambda_w T = 2.9mmK$. Use the solution x = 5

for
$$1-e^{-x}=\frac{x}{5}$$
. (8 marks)