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1. Answer  any  THREE questions only
1. Candidates are advised not to write on the question paper.
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QUESTION ONE [20 MARKS]
(a). Describe the terms: Vitali’s Cover, Outer measure, Upper Riemann integral and Measurable
       function.                                                                                                                     (8 marks)
(b). State and prove Vitali’s Covering Theorem.                                                              (6 marks)
(b). Show that any non-degenerate interval of R is uncountable.                                     (6 marks)


QUESTION TWO [20 MARKS]
 (a). Prove that a measure is countably additive.                                                              (7 marks)
 (b). State and prove Fatou’s lemma. Moreover, describe its consequences.                   (7 marks)                                                                                                     
 (c). State and prove the complex form of Lebesgue’s Dominated Convergence Theorem.
                                                                                                                                           (6 marks)



QUESTION THREE [20 MARKS]
(a). Deﬁne the following terms giving relevant examples.
         (i). Sigma-finite Complete measure space.                                                                (4 marks)
         (ii). Counting measure.                                                                                              (4 marks)
(b). Show that the length of an interval is equal to its outer measure.                             (12 marks)

QUESTION FOUR [20 MARKS]
State and prove the following theorems and hence give their applications in other fields:
(a). Monotone Convergence Theorem.                                                                             (10 marks)
(b). Cantor’s intersection Theorem.                                                                                  (10 marks)                                                                                      

QUESTION FIVE [20 MARKS]
(a) Describe Young’s inequality and show its applications in integration theory.             (7 marks)
(b). Show that outer measure is monotone.                                                                        (6 marks)
(c). Describe the relevance of integration theory to other fields of mathematics.              (7 marks)
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