1. Approximation and errors

1. The length and breadth o a rectangular room are 15cm and 12 cm respectively. If each of these measurements is liable to 1.5% error, calculate the absolute error in the perimeter of the room

(3 mks)

- 2. The length and width of a rectangle are stated as 18.5cm and 12.4cm respectively. Both measurements are given to the nearest 0.1cm.
 - a) Determine the lower and upper limit of each measurement. (1 mark)
 - b) Calculate the percentage error in the area of the rectangle. (3 marks)
- 3. The top of a table is a regular hexagon. Each side of the hexagon measures 50.0cm Find

the maximum percentage error in calculating the perimeter of the top of the table

(3mks)

b)

- 4. A rectangular room has length 12.0 metres and width 8.0 metres. Find the maximum percentage error in estimating the perimeter of the room.
- 5. In this question mathematical tables or calculator should not used. The base and perpendicular height of a triangle measured to the nearest centimeters are 12cm and 8cm respectively; Find ;
 - (a) the absolute error in calculating the are of the triangle
 - b) the percentage error in the area, giving the answer to 1 decimal place
- 6. A rectangular plate has a perimeter of 28cm. determine the dimensions of the plate that give the maximum area
- 7. A wire of length 5.2m is cut into two pieces without wastage. One of the pieces is 3.08m long. What is the shortest possible length of the second piece?
- 8. The dimensions of a rectangle are 10cm and 15cm. If there is an error of 5% in each of the Measurements. Find the percentage error in the area of the rectangle.
- 9. Find the products of 17.3 and 13.8. Find also the percentage error in getting the product.
- 10. The mass of a metal is given as 14kg to the nearest 10g. Find the percentage error in this measurement.
- 11. Complete the table below for the functions $y = \cos x$ and $y = 2 \cos (x + 30^\circ)$ for $0^\circ \le X \le 360^\circ$

Х	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
Cos X	1	0.87	0.5		-0.5	0.87	-1.0		0.5	0		0.87	1
$2\cos$	1.7		0	-		-2.0	-1.73	-1.0		1	1.73	2.00	1.73
(x+	3			1.0									
30°)													

a) On the same axis, draw the graphs of $y = \cos x$ and $y = 2 \cos (x + 30^{\circ})$ for $0^{\circ} \le X \le 360^{\circ}$

i) State the amplitude of the graph $y = \cos x^{\circ}$

ii) State the period of the graph $y = 2\cos(x + 30^\circ)$

c) Use your graph to solve

 $\cos x = 2 \cos (x + 30^{\circ})$

12. Given that $8 \le y \le 12$ and $1 \le x \le 6$, find the maximum possible value of:

$\frac{y+x}{y-x}$