

# Download this and other FREE materials from https://teacher.co.ke/notes

# ASUMBI GIRLS HIGH SCHOOL TERM 2 – DECEMBER 2021 FORM 4

# **CHEMISTRY PAPER 2**

| Name:                         | Adm No:           |
|-------------------------------|-------------------|
| Class:                        | Candidate's Sign: |
| Date:                         |                   |
| 233/2<br>CHEMISTRY<br>PAPER 2 |                   |
| TIME: 2 HOURS                 |                   |

Kenya Certificate of Secondary Education (K.C.S.E.)

# FORM FOUR

Chemistry Paper 2

### **INSTRUCTIONS TO THE CANDIDATES:**

- Write your **name** and **admission number** in the spaces provided above
- **Sign** and write the **date** of examination in the spaces provided.
- Answer *all* the questions in the spaces provided.
- All working must be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

## For Examiners Use Only

| Question | Maximum score | Candidate's score |
|----------|---------------|-------------------|
| 1        | 14            |                   |
| 2        | 12            |                   |

© Form 4 1 Chemistry 233/2

|       |    | Teacher.co.ke |
|-------|----|---------------|
| 3     | 11 | Teacheroone   |
| 4     | 12 |               |
| 5     | 9  |               |
| 6     | 12 |               |
| 7     | 10 |               |
| Total | 80 |               |

1. The grid below shows a section of the periodic table, the letters are not the actual chemical symbol.

| K          | L         |                         |                        |           |          | М                                       |          | N          | Р         |
|------------|-----------|-------------------------|------------------------|-----------|----------|-----------------------------------------|----------|------------|-----------|
|            | Q         |                         |                        | R         | S        |                                         | Т        | V          |           |
| W          |           |                         |                        |           |          |                                         |          |            |           |
| a)         | Name th   | e family into which ele | ment P belongs to      | 1         |          |                                         |          | (1         | mk)       |
|            |           |                         |                        |           |          |                                         |          |            |           |
| <b>b</b> ) | Which to  | wo elements forms the   | most soluble carbona   | ates      |          |                                         |          | (2r        | nks)      |
|            |           |                         | cher                   |           |          | 77-                                     | <u></u>  |            |           |
| c)         | With a r  | eason, identify element | s in period 3 with the | e largest | atomic   | radius                                  |          | (2r        | nks)      |
|            |           |                         |                        |           |          |                                         |          |            |           |
| <b>d</b> ) | Write th  | e formula of the compo  | ound formed between    | Q and     | M        | • • • • • • • • • • • • • • • • • • • • | ••••••   | (1r        | nk )      |
|            |           |                         |                        |           |          |                                         | •••••    |            |           |
| e)         | State two | o uses of element R and | I for each use, state  | propert   | y of ele | ement R t                               | hat make | es lts pos | sible for |
|            | the use   | _                       |                        |           |          |                                         |          |            |           |
|            | (i) U     | Jse                     |                        |           |          |                                         |          |            | (1mk)     |
|            |           |                         |                        |           |          |                                         |          |            |           |
|            | F         | roperty                 |                        |           |          |                                         |          |            | (1mk)     |

2.



| (ii) Use (1m |     |
|--------------|-----|
|              |     |
|              | nk) |
|              |     |

g) In terms of structure and bonding explain why the oxides of element Thas relatively low boiling points (2mks)

(a) name the following compounds

(3mks)

(i) CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH

.....

(ii)

(iii)CH3CH2OOCCH2CH3



b) Two types of detergents P and Q can be represented as

P: R-COONa

$$Q: R - \bigcirc - OSO_3Na$$

- (i) Identify each type of the detergent (2mks)
- (ii) Which of the two detergents is the best to use with hard water? Give a reason (2mks)
- (iii) State one advantage of detergent P (1mk)
- (iv) State one disadvantage of detergent Q (1mk)
  - (c) An hydrocarbon can be represented as follows



- (i) Identify the hydrocarbon (1mk)
- (ii) Name two reagents that can reacted together to generate the hydrocarbon (2mks)
- 3. (a) Name two apparatuses that can be used for determining mass in a laboratory (2mks)
  - - (b) One of the flames produced by Bunsen burner is the luminous flame
      - i) Explain why this flame is very bright (1mk)



|        |       |         | Teacher.c                                                                                                                   | o.ke   |
|--------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------|--------|
|        |       | ii) Sta | ate two disadvantages of the luminous flame                                                                                 | (2mks) |
|        | (c)   |         | s usually one of the substances that is considered as a mixture  Identify the two most abundant component of air            | (2mks) |
|        | ••••• |         |                                                                                                                             |        |
|        |       | (ii)    | Give two reasons why the air is considered as a mixture                                                                     | (2mks) |
| ••••   |       | (iii)   | One of the components of air is carbon (iv) oxide. Describe an exused to prove the presence of carbon (iv) oxide in the air | (2mks) |
| •••••  |       |         |                                                                                                                             |        |
| <br>4. | (a)   |         | liagram below shows the process used to obtain Sulphur from under                                                           |        |
|        |       |         |                                                                                                                             |        |



- i) Name the above process used to obtain sulphur from the underground deposits (1mk)
  - ii) Name the substance passed through pipeA (1mk)

|                                         |                                         | В                                                                       | Teacher.co.ke            | (1mk)          |
|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|--------------------------|----------------|
|                                         | iii)                                    | State two properties of Sulphur that makes it possible to oprocess      | extract using the        | e above (2mks) |
|                                         |                                         |                                                                         |                          |                |
|                                         |                                         |                                                                         |                          |                |
| b)                                      |                                         | diagram below shows the contact process used in the manufauric(vi) acid | acture of conce          | ntrated        |
|                                         | SUL                                     | PHUR BURNER PURIFIER                                                    | CHTPSM                   | 503            |
|                                         |                                         | SUBSTANCE DILUTION OLGUM CHAMBER  H2504                                 | SUBS<br>ABSORP<br>CHAMBE | imee R         |
| i)                                      | Ident                                   | ify the following:                                                      |                          |                |
|                                         | a)                                      | Substance Q formed in the burner                                        |                          | (1mk)          |
|                                         | b)                                      | Chamber T                                                               |                          | (1mk)          |
|                                         | c)                                      | Substance R                                                             |                          | (1mk)          |
|                                         | d)                                      | Substance S                                                             |                          | (1mk)          |
| ii)                                     | Write                                   | e the chemical equation occurring in the dilution chamber               |                          | (1mk)          |
| • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |                                                                         |                          | •••••          |



|      | iii)<br> | Why i   | is it necessary to pass substance Q though a purifier                                       | (1mk)        |
|------|----------|---------|---------------------------------------------------------------------------------------------|--------------|
| •••• | iv)      | State   | one use of sulphuric (VI) acid                                                              | (1mk)        |
| 5.   | (a)      | Calan   | nine is one of the ores from which zinc can be extracted from                               |              |
|      |          | (i)     | Name any other ore from which zinc can be extracted from                                    | (1mk)        |
|      |          | (ii)    | The calamine is usually decomposed by heating to obtain substance M as below                | shown        |
|      |          |         | $ZnCO_3$ $\longrightarrow$ $M + CO_2$ Identify substance $M$                                | (1mk)        |
|      |          | (iii)   | Identify two methods that can be used to obtain zinc from substance M                       | (2mks)       |
|      |          |         |                                                                                             |              |
|      | (b)      |         | g the extraction of zinc, name two gases likely to emitted into the air and these pollution | (2mk)        |
|      | (c)      | State   | one likely pollution effects of each of the gases you have mentioned in (a)                 | above (2mks) |
|      | (d) Sta  | ate one | possible use of zinc metal                                                                  | (1mk)        |



| 6.    | (a)            | define the term electrolysis                                                                       | (1mk)                   |
|-------|----------------|----------------------------------------------------------------------------------------------------|-------------------------|
| ••••• |                |                                                                                                    |                         |
| ••••• | (b)            | State two functions of a salt bridge during electrolysis                                           | (2mks)                  |
|       |                |                                                                                                    |                         |
| ••••• | (c) T          | he reduction potential of elements K, L, M, and P are as given below.                              | •••••                   |
|       |                | $K^{+}_{(aq)} + e^{-} $ $K_{(S)}, E = -1.46v$                                                      |                         |
|       |                | $L^{2+} + 2e^{-}$ $L_{(S)}$ , $E = +0.49V$                                                         |                         |
|       |                | $M^{2+}$ $M_{(S), E} = -2.69V$                                                                     |                         |
|       |                | $N^{+}_{(aq)} + e^{-}$ $N_{(s)}, E = +0.52 \text{ V}$                                              |                         |
|       |                | $P^{+}_{(aq)}$ $P_{(s), E}=-0.86V$                                                                 |                         |
|       | (i)            | Which letter represents the, strongest reducing agent? give a reason                               | (2mks)                  |
|       |                |                                                                                                    |                         |
|       | (ii)           | Which two letters represent elements whose half cells would form an electrowith the largest e.m.f? | ochemical cell<br>(1mk) |
|       | (iii)          | Calculate the e.m.f of the cell formed in (ii) above                                               | (2mks)                  |
|       |                |                                                                                                    |                         |
| ((    | d) Durir       | ng the electrolysis of a molten chloride of metal Q, a current of 0.25A was pass                   | sed though the          |
|       | molte<br>catho | en chloride for 2 hours and 10minutes. Given that 0.9grams of metal Q were do                      | eposited at the         |
|       | (i)            | Calculate the quantity of electricity passed                                                       | (1mk)                   |
|       |                |                                                                                                    |                         |
|       |                |                                                                                                    |                         |

|       |                     |          | Teacher.co.                                                               | ke e                       |
|-------|---------------------|----------|---------------------------------------------------------------------------|----------------------------|
|       |                     |          |                                                                           |                            |
|       | (ii)<br>            | Charg    | ge carried by the ions of metal Q given that R.A.M of metal Q is 84       | (3mks)                     |
|       |                     | •••••    |                                                                           |                            |
|       |                     |          |                                                                           |                            |
|       |                     | •••••    |                                                                           |                            |
| <br>7 | (a)                 | starti   | ng with magnesium oxide, describe how you can obtain a dry sample         | of magnesium               |
|       |                     | Carbo    | onate                                                                     | (3mks)                     |
|       |                     |          |                                                                           |                            |
|       |                     |          |                                                                           |                            |
|       |                     |          |                                                                           |                            |
|       | • • • • • • • • • • | •••••    |                                                                           |                            |
|       |                     |          |                                                                           |                            |
|       |                     | •••••    | - Teacher co ke                                                           |                            |
| ••••  | • • • • • • • • •   | •••••    |                                                                           |                            |
|       | (b)                 | (i)      | Give one example of an acid salt                                          | (1mk)                      |
|       |                     |          |                                                                           |                            |
|       |                     | (ii)     | When sodium nitrate was heated a solid A and gas B were produce and gas B | ed identify solid A (2mks) |
|       |                     |          |                                                                           |                            |
|       |                     |          |                                                                           |                            |
|       |                     | (iii)    | State two uses of gas B produced in (ii) above                            | (2mks)                     |
|       |                     |          |                                                                           |                            |
|       |                     |          |                                                                           |                            |
|       | (c) S <sub>1</sub>  | tate two | factors that should be considered when choosing a fuel                    | (2mks)                     |

| <br>Teacher.co.ke |
|-------------------|
|                   |
|                   |
|                   |
|                   |

\*\*\*\*\*\*\*\*\*\*END\*\*\*\*\*\*\*

