

# PAPER 3

# **CHEMISTRY**

# Form 4



# MARKING SCHEME

# MARKING SCHEME FORM 4 CHEMISTRY PRACTICAL

# **QUESTION 1**

# TABLE 1

- ✓ complete table CT 1 mk
- ✓ decimal point D 1 mk
- ✓ accuracy A (tied to school value)1 mk
- ✓ principal of averaging 1 mk
- a) i) Average volume / final accuracy 1(tied to school value)NB theoretically expected value = 15.0 cm3

ii) 
$$\frac{1M \times 75 \text{ cm}3}{250 \text{ cm}3}$$
  
= 0.3M

½ mk

½ mk

b) 
$$\frac{\text{Ans in (b)above X ans in (a)above} \frac{1000}{1000}}{\text{Ans in (b)above}} = \text{ans}$$

½ mk

c) 
$$2MOH_{(aq)} + \frac{H_2SO4_{(aq)}}{H_2SO4_{(aq)}} \rightarrow M_2SO4_{(aq)} + \frac{H_2O_{(l)}}{H_2O_{(l)}}$$

1mk

d) Mole ratio = 
$$2:1$$

1/2 mk

½ mk

f) 
$$\frac{ans \ in \ b(i)x \ 1000\frac{1}{2} \ mk}{25}$$
 = ans

½mk

g) 
$$\frac{ans \ in \ (i)x \ 600}{25}$$
  $\frac{mk}{mk} = ans^{\frac{1}{2}mk}$ 

h) 
$$\frac{8.7}{ans\ in\ b\ (iii)}$$
  $^{1/2}$  mk = RFM OF MOH  $^{1/2}$  mk

i) RAM of metal M = RFM 
$$-(16+1)^{\frac{1}{2}}$$
 mk = ans  $\frac{1}{2}$  mk

# Download this and other FREE materials from https://teacher.co.ke/notes

# Teacher.co.ke

# **QUESTION 2**

### TABLE 2

- ✓ complete table CT1mk
- √ decimal point D 1mk
- ✓ trend (increasing time )1mk
- j) 1/t row completed 1mk

# a) Graph

- k) Plotting 1mk
- l) Scale 1**mk**

Straight line touching origin (0,0) 1mk

- b) Correctly read value from the graph 1mk
- c) Correct reciprocal of value read from the graph 1mk
- d) Rate at reaction increase with increase in concentration of the sodium thiosulphate because increase in concentration increases number of successfulcollisions

### Question 3

### i) Solid Q

a)

|      | Observation                                            | inferences                                                                                                 |
|------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| i)   | No white ppt formed ½ mk                               | Ca <sup>2+</sup> Mg <sup>2+</sup> , Pb <sup>2+</sup> , Al <sup>3+</sup> Zn <sup>2+</sup> Absent <b>1mk</b> |
| ii)  | Burns with a golden yellow flame ½ mk                  | Na <sup>+</sup> confirmed <b>1mk</b>                                                                       |
| iii) | White ppt formed ½ mk                                  | Cl-, SO <sub>4</sub> <sup>2-</sup> , SO <sub>3</sub> <sup>2-</sup> , CO <sub>3</sub> <sup>2-</sup> 1mk     |
| iv)  | KMNO4 decolorized½ mk SO <sub>3</sub> ²-, Confirmed1mk |                                                                                                            |
| В    | ) Effervescence occurs ½ mk                            | CO <sub>3</sub> <sup>2-</sup> , SO <sub>3</sub> <sup>2-</sup> <b>1mk</b>                                   |
| ii)  | Yellow ppt formed½ <b>m</b> k                          | Pb <sup>2+</sup> confirmed <b>1mk</b>                                                                      |

# ii) Solid R

|      | Observation                                    | inferences                                         |
|------|------------------------------------------------|----------------------------------------------------|
| а    | Burns with a yellow sooty flame½ mk            | $=C = C = , = \overline{C} = C = @1/2 \text{ mks}$ |
| B(i) | Dissolves½ mk forming a colorless solution½ mk | Polar substance½ mk                                |
| ii)  | KMNO₄ decolorized½ mk                          | ROH, =C = C =, = C = C =<br>1mk                    |
| ii)  | Effervescence½ mk                              | H <sup>+</sup> or RCOOH <b>1mk</b>                 |