

Kenya Certificate of Secondary Education

BIOLOGY

PAPER 3

MARKING SCHEME

1. (a) (i)

 $S_2 - Pericarp;$ $S_3 - Mesocarp;$ $S_4 - Seed;$ $S_5 - Endocarp;$ $S_6 - Fruit stalk;$ (iii) T₂ - Remains of calyx; T₃ - Placenta; T₄ - Seed/ovule;

(4mks)

(iii)

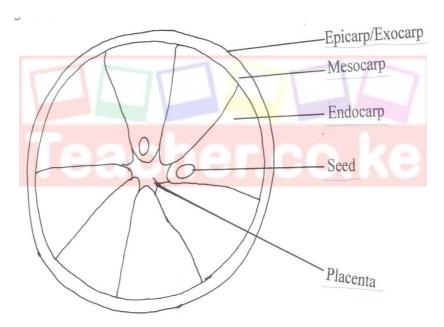
T₅ – Funicles;

Specimen	Type of fruit	Reasons	
S ₁	Drupe;	 Once seed; Accept: hard or stony endocarp; Fleshy mesocarp; basal placentation 	
T ₁	Legume pod	 Two sutures/two lines of weakness. Accept: marginal placentation. 	

4/2=2mks

(iv)

Specimen	Method of dispersal	Reasons
S ₁	Animal	- Bright colour; accept: fleshy mesocarp
T ₁	Mechanical (self-explosive mechanism	- Two lines of weakness


 $^{4}/_{2} = 2mks$

(b) (i)

L = 3 max

D = 1mk

4mks

(ii) Axile; 1mk Reject Axil or axile.

(iii)

Food substance	Procedure	Observation	Conclusion
Reducing sugar;	 Add equal amount of Benedict's soln. heat 	- Colour to orange/brown	- Reducing sugars present
Ascorbic acid or	- Add juice dropwise to	DCPIP discolourises	Ascorbic acid or vit C.

ſ	vitamin C	DCPIP	present

 $\frac{6}{2} = 3 \text{ mks}$

Reject Arthroponda;

Anthropoda

(ii) Presence of exoskeleton; have segmented body

Accept jointed appendages (2mks)

(b) (i) R - Insecta 1mk reject insect

Q – Arachnida 1mk

(ii) R – three body regions; 1mk

Accept - three pairs of legs

One pair of antennae

One pair of compound eyes

One pair of spiracles per segment

Q – Body divided into two parts (Cephalothorax and abdomen); 1mk

Accept four pairs of walking legs

Set $_1$ – normal conditions

Set E_1 – in the dark

Set B – unidirectional light

- (b) (i) Etiolation; 1mk
 - (ii) To reach light; 1mk
- (c) (i) Positive phototropism; 1mk
 - (ii) Auxins move to the darker side causing faster growth on this side; resulting in curvature

3mks

of the shoot towards the source of light; 2mks

(d) (i) Set A₁ – Epigeal; 1mk

Set M₁ – hypogeal; 1mk

- (ii) Set A₁ cotyledons brought above the ground; 1mk
 - Set M_1 cotyledons remain below the earth's surface/underground; 1mk

