Name	Index Number
233/2 CHEMISTRY	Candidate's Signature
Paper 2 Nov. 2016	Date
Nov. 2016	
2 hours	

THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education CHEMISTRY Paper 2 (THEORY) 2 hours

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer **all** the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 12 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

Question	Maximum Score	Candidate's Score
1	11	
2	12	
3	13	
4	11	
5	10	
6	12	
7	11	
Total Score	80	

For Examiner's Use Only

1. Use the information in the table below to answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Atomic number	Melting point °C
R	11	97.8
S	12	650.0
Т	15	44.0
U	17	-102
V	18	-189
W	19	64.0

~

(a) Give a reason why the melting point of:

	(i)	S is higher than that of R.	(2 marks)
			•••••
			•••••
	(ii)	V is lower than that of U.	(2 marks)
(b)	How d	loes the reactivity of W with chlorine compare with that of \mathbf{R} with chlorin	ne? (2 marks)
(c)	Write	an equation for the reaction between T and excess oxygen.	(1 mark)
	•••••		
	•••••		
	•••••		

Vanna Contificate of Coordam Education 2016

	(d)	When 1.15 g of R was reacted with water 600 cm^3 of gas was produced. Determine the relative atomic mass of R. (Molar gas volume = 24000 cm^3) (3 marks)
	(e)	Give one use of element V. (1 mark)
2.	(a)	Describe the process by which nitrogen is obtained from air on a large scale. (4 marks)
	(1)	
		Study the flow chart below and answer the questions that follow. Nitrogen gas Ammonia Copper (II) oxide Copper (II) oxide Step (VI) Heat Flatinum-Rhodium High temperature Gas J Step (II) Air Nitrogen (IV) oxide Step (III) Air Nitric (V) Ammonia Ammonium nitrate Step (IV) Heat Products

Kenya Certificate of Secondary Education, 2016 233/2

Turn over

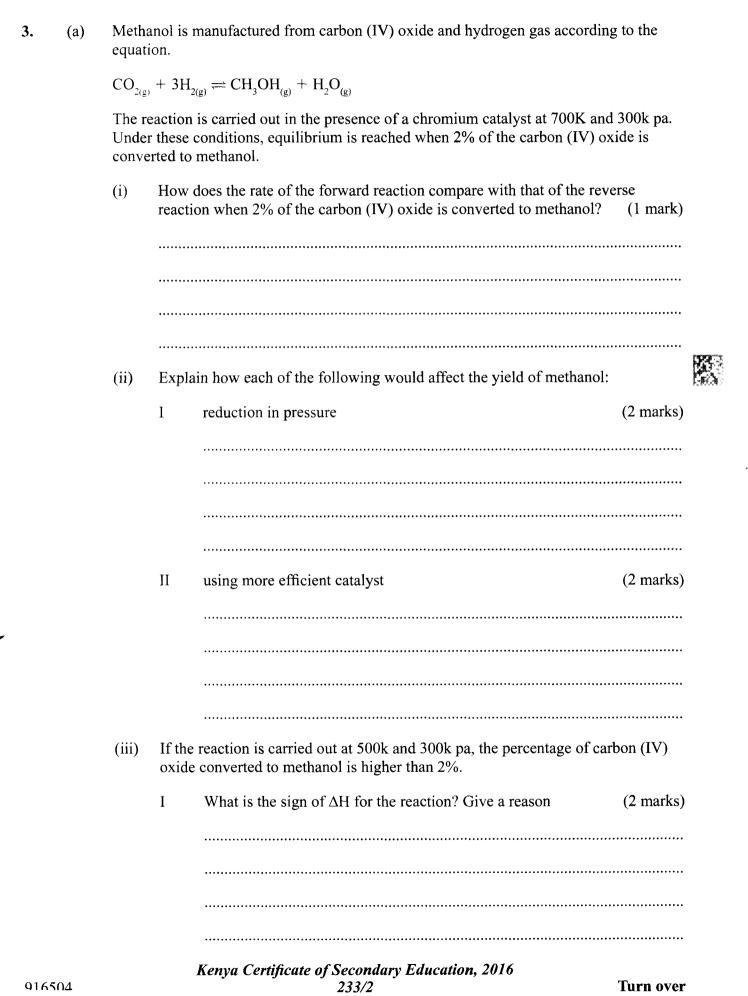
.

,

(i)	Identify gas J.	(1 mark)
(ii)	Using oxidation numbers show that ammonia is the reducing agent is	n step (VI) (2 marks)
(iii)	Write the equation for the reaction that occurs in step (V).	(1 mark)
		••••••
(iv)	Give two uses of ammonia nitrate.	(2 marks)
		•••••
		•••••

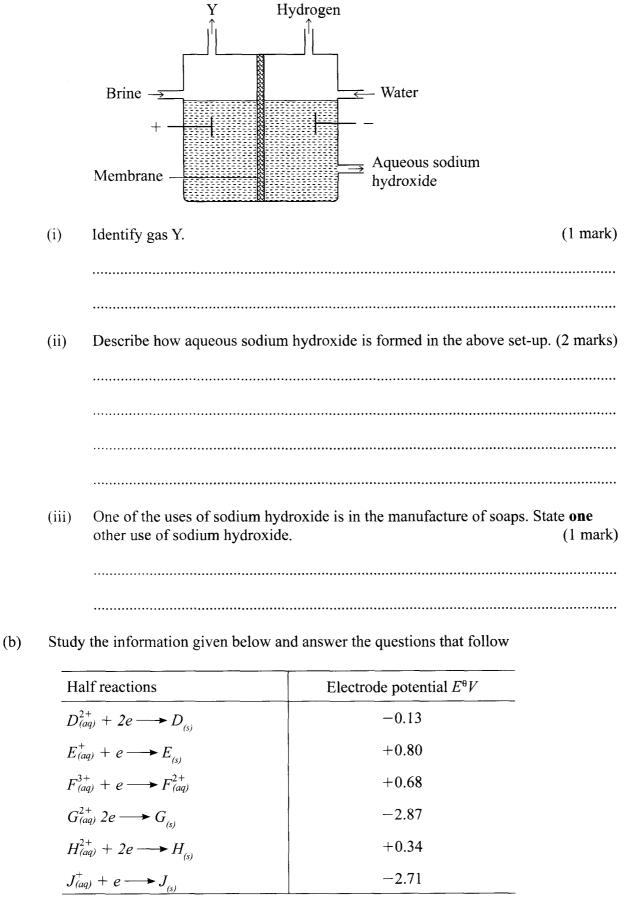
×

(c) The table below shows the observation made when aqueous ammonia was added to cation of elements E, F and G until in excess.


Cation of	Addition of a few drops of aqueous ammonia	Addition of excess aqueous ammonia
Е	White precipitate	Insoluble
F	No precipitate	No precipitate
G	White precipitate	Dissolves

(i) Select the cation that is likely to be Zn²⁺. (1 mark)
(ii) Given that the formula of the cation of element E is E²⁺ write the ionic equation for the reaction between E²⁺ (aq) and aqueous ammonia. (1 mark)

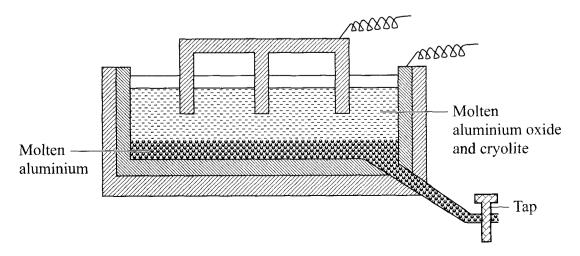
Kenya Certificate of Secondary Education, 2016


4

6 Explain why in practice the reaction is carried out at 700K but not at 500K Π (2 marks) _____ _____ (b) Hydrogen peroxide decomposes according to the following equation: $2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$ In an experiment the rate of decomposition of hydrogen peroxide was found to be $6.0 \times 10^{-8} \, \text{moldm}^{-3} \text{S}^{-1}$ (i) Calculate the number of moles per dm³ of hydrogen peroxide that has decomposed within the first 2 minutes. (2 marks) _____ In another experiment, the rate of decomposition was found to be (ii) 1.8×10^{-7} moldm⁻³S⁻¹. The difference in the two rates could have been caused by addition of a catalyst. State giving reason, one other factor that may have caused the difference in the two rates of decomposition. (2 marks) _____

Kenya Certificate of Secondary Education, 2016

4. (a) The set up below can be used to produce sodium hydroxide by electrolysing brine.


Kenya Certificate of Secondary Education, 2016 233/2

Turn over

01650/

(i)	Construct an electrochemical cell that will produce the largest e.m.f.	(3 marks)
(ii)	Calculate the e.m.f. of the cell constructed in (i) above.	(2 marks)
		•••••
(iii)	Why is it not advisable to store a solution containing $E+$ ions in a conof H?	tainer made (2 marks)

5. The diagram below represents a set up of an electrolytic cell that can be used in the production of aluminium.

Konva Cortificate of Secondary Education, 2016

6.	(a)	Draw the structural formula formula	or all the isomers of C_2	H ₃ Cl ₃ .	(2 marks)
	(b)	Describe two chemical tests th	nat can be used to disti	nguish between ethene and	ethane. (4 marks)
	(c)	The following scheme represe answer the questions that follo		tarting with propan-l-ol. U	se it to
		Prop-1-ene Dehydration Step I	Step II Polymerisation	Polymer X	
		Propan-1-ol Oxidation V Step III			
		Propanoic acid –	Step IV Add sodium carbonate	Products	
		(i) Name one substance th	at can be used in Step	I.	(1 mark)
		(ii) Give the general form	ıla of X.		(1 mark)

Konva Cortificate of Secondarv Education, 2016

	(iii)	Write the	equation for the	reaction in Step IV.		(1 m
(iv)	temperati		pan-l-ol which when the would produce 18dm^{-1} e = 24 dm ³)			
		•••••••••••••••				
(a)	Write			ects of heat on the ni	trates of:	
	(i) Potassium					(1 m
	(ii)	Silver				(1 m
		•••••				
		•••••				
(b)	The t	able below	gives informatio	n about elements A_1 ,	$A_2, A_3 \text{ and } A_4.$	
	El	ements	Atomic Number	Atomic radius (nm)	Atomic radius (nm)	
	A		3	0.134	0.074	
	A		5	0.090 0.143	0.012 0.050	
	A: A		13	0.143	0.181	
	1 / 1					

,

7.

- -

(iv) Using Dots (.) and crosses (x) to represent outermost electrons, draw a diagram to show the bonding in the compound formed when A1 reacts with A4. (2 marks)

THIS IS THE LAST PRINTED PAGE.

