THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education 233/1 ### — CHEMISTRY — Paper 1 # (THEORY) Nov. 2019 – 2 hours | Name | Index Number | |-----------------------|--------------| | Candidate's Signature | Date | #### Instructions to candidates - (a) Write your name and index number in the spaces provided above. - (b) Sign and write the date of examination in the spaces provided above. - (c) Answer all the questions in the spaces provided in the question paper. - (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used. - (e) All working must be clearly shown where necessary. - (f) This paper consists of 16 printed pages. - (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. - (h) Candidates should answer the questions in English. #### For Examiner's Use Only | 1 | 2 | 3 | 4 | 5 | 6 | 7. | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |----|----|-----|----|----|----|-------|---|---|-----|----|----|----|------|----|----| | | | 10° | | 4 | | Lames | | 1 | J - | | 1 | | migh | 2 | | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | | 20 | | | 3, | 2 | | | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | |----|---|----|----|----|-----|----|-----|------|----|-----|----|----|----------------|--| | | *************************************** | | | | SAL | 38 |))+ | 51.0 | | (6) | 18 | | Grand
Total | | © 2019 The Kenya National Examinations Council 233/1 Turn over | 1. | An atom of | element A | has mass | number 39 | and 19 | protons | |----|------------|-----------|----------|-----------|--------|---------| |----|------------|-----------|----------|-----------|--------|---------| | (1 mark) | (a) Write the electron arrangement of the atom. | | |---|---|--| | | (b) State the period and group to which element A belongs. | | | | Period | | | (1 mark) | (c) State whether the element is a metal or a non-metal. | | | - 166 <u>148 882 7</u> 5 | | | | (2 marks) | Describe how an increase in concentration increases the rate of a reaction. | | | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | 3. The flow chart in Figure 1 represents some stages in the extraction of copper metal. Study it and answer the questions that follow. Figure 1 | | (a) | Identify: | | |--------|-------|--|-----------------------------------| | | | (i) the copper ore | (1 mark) | | | | (ii) process B | | | | | (iii) solid C | (½ mark) | | | (b) | Write an equation for the reaction that forms the slag. | (1 mark) | | | | | | | | | | | | 4. | A mor | nomer has the following structure. | | | (die a | | CH=CH ₂ | Aced Hyperconn | | 9 | (a) | C_6H_5 Draw the structure of its polymer that contains three monomers. | (1 mark) | | | | | | | | | | | | He | (b) | A sample of the polymer formed from the monomer has a mole Determine the number of monomers that formed the polymer ($C=12$) | cular mass of 4992.
2; H=1.0). | | | | | (2 marks) | | | | ar mar with a thing path one in that the article of the article for the first of the second field of | | | | | Takeng of hear of hear relations where were a reality of the same | tar t arriva | | | | | | | | | | | | | | | | Figure 2 | | (a) | Write an equation for the reaction that produces hydrogen gas. | (1 mark) | |----|--------|--|-------------------------------| | | | | | | | | The series of th | | | | (b) | Explain why the delivery tube must be removed from beneath the water stopped. | before heating is
(1 mark) | | | (c) | Explain why sodium metal is not suitable for this experiment. | (1 mark) | | 6. | be 3.0 | mer intended to plant cabbages in his farm. He first tested the pH of the so
0. If cabbages do well in alkaline soils, explain the advice that would be given to realise a high yield. | ven to the farmer (2 marks) | | | | | | | | | 44 | | | | | | | | | | | | 1696 800 (1 mark) | (a) | Calcu | late the number | of moles of XOH that re | acted. | (½ mark | |-----|-----------|-------------------|-----------------------------------|--|------------| SHIP. | | (as total delighter tracks of the | | regular il | | | | | | | | | | | | | | | | (b) | Detern | nine the relative | e atomic mass of X. | | (1½ marks | | | | | | | • | | | | | | | | | | 71.Q-mi | | | De la Constitución Constit | | | | | | | | | | | | 7.000 | | | | | | N man | and the same of | 1 had a second | _ that g | | | Tab | le 1 show | s the properties | of two chlorides, D and | E. | | | | | | Table 1 | and address | | | | | Chlorides | Melting points (°C) | Electrical conductivity (liquid) | | | | | D | 1074 | Good | | | | | | 203 | Poor | | | | | E | 200 | | | | | S | skall or | the same with the little or. | and restaurable and agency | | | (a) | State t | he type of bond | the same with the little or. | nde est automatica de aga el | | | (b) | Explain in terms of structure and bonding, the difference in electrical conductivity of the chlorides D and E . (1 mark) | |-----|--| | | | | | | | | | | | | Sulphur(IV) oxide is prepared in the laboratory using the set-up in Figure 3. Study it and answer the questions that follow. Figure 3 | (a) | Identify substance F. | (1 mark) | |-----|---|----------| | (b) | Write an equation for the reaction that takes place in the flask. | (1 mark) | | | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 | | | (c) | State the purpose of liquid G. | (1 mark) | | | | | 10. The graph in Figure 4 was obtained when a certain substance was heated and its temperature recorded at regular intervals. Figure 4 | | (a) | State the purity of the substance. | (1 mark | |----|-------|--|----------| | | (b) | Explain the answer in (a). | (2 marks | | | | | e une | | | | Supplied the property of the control | | | 1. | Ethen | e is prepared in the laboratory by dehydration of ethanol. | | | | (a) | Name a suitable dehydrating agent used in this process. | (1 mark | | | | | | | | (b) | State the condition necessary for the reaction to occur. | (1 mark) | | | (c) | Write an equation for the dehydration process. | (1 mark) | | | | | | | | | | | 919234 Kenya Certificate of Secondary Education, 2019 233/1 Turn over | (a) | he set-up left in sunlight for about 2 hours. State the observations made in the boiling tube. | (1 mark) | |--------|---|-----------| | | | | | | | | | (b) | Explain the observations made in (a). | (1 mark | | | | | | (c) | Write an equation for the reaction that occurred in the boiling tube. | | | 97.76 | | (1 mark) | | | | | | | f calcium carbonate was strongly heated to a constant mass. Calculate the formed ($Ca = 40.0$; $C = 12.0$; $O = 16.0$). | (2 marks) | | ••••• | | | | | | | | . Duri | ng laboratory preparation of oxygen, manganese(IV) oxide is added to re | Cagent H | | (a) | Name reagent H. | (1 mark) | | (b) | State the role of manganese(IV) oxide in this experiment. | (1 mark) | | (c) | Waite of | | | (c) | Write the equation for the reaction that takes place. | (1 mark) | | | | | | | | | 15. Figure 5 shows an apparatus used to separate a mixture of water and hexene. Figure 5 | (a) | Nam | e the apparatus in Figure 5. | (1 mark) | | | | | | |-----|-------|--|----------|--|--|--|--|--| | (b) | State | the principle by which the mixture of the two liquids is separated. | (1 mark) | | | | | | | | | 201 | <u> </u> | | | | | | | (c) | Ident | Identify the liquids, R and S if the density of hexene is 0.66 g/cm ³ . | | | | | | | | | (i) | R | (½ mark) | | | | | | | | (ii) | S | (½ mark) | | | | | | 800 16. (a) Complete the following table. (2 marks) | Solution | рН | Nature of solution | |----------|------|--------------------| | Н | 1.0 | - L | | I | | Neutral | | J | | Weak acid | | K | 13.0 | | | | (b) | Explain why a solution of ammonia in methylbenzene has no effects on red litmus while in aqueous ammonia red litmus paper turns blue. | paper
mark) | |-----|-----------|--|------------------| | | | | | | 17. | The respe | heat of solution and hydration energy of potassium chloride is -17.2kJ and -6 ectively. Calculate the lattice energy of potassium chloride. (2 m | 689 kJ
narks) | | | ••••• | | | | | | | | | | 1 | on the same of | | 18. Use the information in Table 2 to answer the questions that follow. Table 2 | Bond | Bond energy (kJ mol-1) | |-------|------------------------| | С-Н | 412 | | CI-CI | 242 | | C-Cl | 338 | | H-Cl | 431 | Kenya Certificate of Secondary Education, 2019 233/1 | | | , 1 1 2 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1 | |-----------------|--|--|--------------------------|-----------------------| | | | | | | | | 911 - /- 4-4-4-1 | and the beginned to a second | | | | (b) | Calculate the heat change when one mole | | | | | | chlorine in the presence of UV light. | | | (2 mark | | | | | | | | | | 11.7 | | | | | | 10 10 10 | 2 24 8 8 | | | | | | | | | | 1 212/18 3 | 4.9 | | | | | *************************************** | | | | | | | | | | | Giver
labell | In that the E^{θ} of $Cu(s)/Cu^{2+}(aq)$ is $+ 0.34V$ | and that of Zn (s)/Z | $\ln^{2+}(aq)$ is -0 . | 76 V, drav | | labell | In that the E^{θ} of $Cu(s)/Cu^{2+}(aq)$ is $+ 0.34 V$ and diagram of zinc and copper electrochem | and that of Zn (s)/Zical cell. | ta di grota | 76 V, drav
(3 marl | | labell | In that the E^{θ} of $Cu(s)/Cu^{2+}(aq)$ is $+ 0.34V$ ed diagram of zinc and copper electrochem | and that of Zn (s)/Zical cell. | the of Special | 76 V, draw
(3 mark | | labell | In that the E^{θ} of $Cu(s)/Cu^{2+}(aq)$ is $+ 0.34 V$ and diagram of zinc and copper electrochem | and that of Zn (s)/Zical cell. | the of Special | 76 V, draw
(3 mark | | labell | In that the E^{θ} of $Cu(s)/Cu^{2+}(aq)$ is $+ 0.34V$ ed diagram of zinc and copper electrochem | and that of Zn (s)/Zical cell. | that candle | 76 V, draw
(3 mark | | labell | n that the E ^θ of Cu(s)/Cu ²⁺ (aq) is + 0.34 V ed diagram of zinc and copper electrochem | and that of Zn (s)/Zical cell. | that candle | 76 V, draw
(3 mark | | labell | n that the E ^θ of Cu(s)/Cu ²⁺ (aq) is + 0.34 V ed diagram of zinc and copper electrochem | and that of Zn (s)/Zical cell. | that candle | 76 V, draw
(3 mark | | | | | | | | | | (| |----------|---|------------|--------------|---------------|------------|---|------------|------------| | a) | Identify substance I | | | | | a. | | · | | | | ••••• | | <u>;</u> | | | | | | b) | Write an equation th | nat produ | ces carbo | n(IV) ox | ide. | | | (| | | | | | | | | | i (H) | | c) | State the observati
hydroxide solution | for a long | g time. | the gas | produced | l was bu | ibbled th | rough (| *************************************** | | | | | | | | | | | | the state of | | | | | | | 'hıdı | u the information in T | -11.2 | | | | | Callan. | | | tudy | y the information in T | able 3 ar | id use it to | answer | the quest | ions that | follow. | | | | | | = d d_ | | | | | | | | | | | Table 3 | | | | | | | Elements | Na | Mg | Al | Si | P | S | CI | | | | 3 1 5 16 | 1 - | (127.0d) | | ALC: N | 3 | Cl | | | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | | Atomic numbers | 11 | 12 | Maria Company | | 100000000000000000000000000000000000000 | 10 12 27 1 | 7111 01332 | | | Atomic numbers Atomic radii (nm) | 0.157 | 0.136 | 0.125 | 0.117 | 0.110 | 0.104 | 0.099 | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | 1.5 | | 3349 | | | a) | | 0.157 | 0.136 | 0.125 | 1.5 | | 3349 | | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | 1.5 | | 3349 | | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | 1.5 | | 3349 | | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | to chlorin | | 0.104 | | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | to chlorin | e | 0.104 | 0.099 | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | to chlorin | e | 0.104 | | | a) | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | to chlorin | e | 0.104 | | | | Atomic radii (nm) Explain the trend in | 0.157 | 0.136 | 0.125 | to chlorin | e. | 0.104 | (| | a)
b) | Atomic radii (nm) Explain the trend in | 0.157 | 0.136 | 0.125 | to chlorin | e. | 0.104 | (| | | Atomic radii (nm) | 0.157 | 0.136 | 0.125 | to chlorin | e. | 0.104 | s in the | | | Atomic radii (nm) Explain the trend in | 0.157 | 0.136 | 0.125 | to chlorin | e. | 0.104 | s in the | | | Atomic radii (nm) Explain the trend in | 0.157 | 0.136 | 0.125 | to chlorin | e. | 0.104 | s in the | | | Atomic radii (nm) Explain the trend in | 0.157 | 0.136 | 0.125 | to chlorin | e. | 0.104 | (| Figure 6 (a) Identify radiations: | (i) | M |
 |
 |
 | (1 | mark) | |-----|---|------|------|------|----|-------| - (b) Explain what would happen when a sheet of paper is placed in the path of the two radiations. (1 mark) 23. ${}^{16}_{8}X$ and ${}^{18}_{8}X$ are isotopes of element X. They occur naturally in the ratio of 9:1 respectively. Calculate the relative atomic mass of element X. (2 marks) | г | red in the laboratory. | e e He I | | |----------------------|--|--|------------------------------------| | | | 7,1 | | | | | | | | | | | | | | * | | | | | | 112 4 112 | .155F/8 | | | | | | | | | | | | | | | | | Chem | ical tests were carried out on separate sar
vations made were recorded as shown in Table | Table 4. | | | Chem | vations made were recorded as shown in | Table 4. | | | Chemobser (i) | vations made were recorded as shown in Table | Table 4. | | | bser | Table Test | Cable 4. Obser | vation | | (i) | Table Test Addition of aqueous calcium chloride | Obser No white precipitate | vation | | (i)
(ii) | Table Test Addition of aqueous calcium chloride Addition of dilute sulphuric(VI) acid Addition of a few drops of acidified | Obser No white precipitate No effervescence, colo | vation
urless solution | | (i)
(ii)
(iii) | Table Test Addition of aqueous calcium chloride Addition of dilute sulphuric(VI) acid Addition of a few drops of acidified barium nitrate Addition of aqueous ammonia | No white precipitate No effervescence, colo No white precipitate | vation
urless solution | | (i)
(ii)
(iii) | Table Test Addition of aqueous calcium chloride Addition of dilute sulphuric(VI) acid Addition of a few drops of acidified barium nitrate Addition of aqueous ammonia the inferences made in reactions: | No white precipitate No effervescence, colo No white precipitate White precipitate disso | vation
urless solution
olves | | (i)
(ii)
(iii) | Table Test Addition of aqueous calcium chloride Addition of dilute sulphuric(VI) acid Addition of a few drops of acidified barium nitrate Addition of aqueous ammonia the inferences made in reactions: | No white precipitate No effervescence, colo No white precipitate | vation
urless solution
olves | 24. | of c | perature and pressure. | | (3 mark | |-------------------|--|--|---------| ••••• | When produced (a) | n burning magnesium ribbon is introducing a greenish yellow powder. Write an equation for the reaction be | uced into a gas jar full of nitrogen, it conti
etween nitrogen and magnesium. | | | prou | Write an equation for the reaction be | | (1 mar | | prou | Write an equation for the reaction be | etween nitrogen and magnesium. | (1 mar | | prou | Write an equation for the reaction be seemed by the | etween nitrogen and magnesium. to burn in nitrogen but sulphur does not. | (1 mar | | (a) | Write an equation for the reaction be | etween nitrogen and magnesium. to burn in nitrogen but sulphur does not. | (1 mar | | (a) (b) | Write an equation for the reaction be | etween nitrogen and magnesium. to burn in nitrogen but sulphur does not. | (1 mark | | (a) | Write an equation for the reaction be | etween nitrogen and magnesium. to burn in nitrogen but sulphur does not. | (1 mark | | (a) (b) | Write an equation for the reaction be | etween nitrogen and magnesium. to burn in nitrogen but sulphur does not. | (1 mark | | 28. Draw in the | ne space provided a labelled
e molten lead(II) bromide. | diagram of the set-up of the | apparatus that can be used to (3 marks) | |-----------------|--|--|---| de a | | | | percusion of the body and the | and the state of t | Sea May a granted and | | | and know white a sole | Participant of the second | (a) Wilke E | Name an appropriate apparatus that is used to prepare standard solutions in the laboratory. 1696 29. 800 (1 mark)