233/2 ## — CHEMISTRY — Paper 2 ## (THEORY) Nov. 2019 – 2 hours | Name | Index Number | |-----------------------|--------------| | Candidate's Signature | Date | 7172 ## Instructions to candidates - (a) Write your name and index number in the spaces provided above. - (b) Sign and write the date of examination in the spaces provided above. - (c) Answer all the questions in the spaces provided. - (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used. - (e) All working must be clearly shown where necessary. - (f) This paper consists of 15 printed pages. - (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. - (h) Candidates should answer the questions in English. For Examiner's Use Only | Question | Maximum Score | Candidate's
Score | | |--------------------|---------------|--|--| | 1 | 12 | and the same of th | | | 2 | 10 | | | | 3 | 12 | and the second | | | 0/42 3 | 12 | - Call 1 D. | | | 5 | 12 | pods to | | | 6 | 11 | | | | 7 | 11 | Half Leg 111 | | | Total Score | 80 | | | © 2019 The Kenya National Examinations Council 233/2 | 1. | (a) | Alkanes are said to be saturated hydrocarbons. | |----|-----|--| | | (-) | The state of s | | | (i) | What is meant by saturated hydrocarbons. | (1 mark) | |----|------|---|---------------------| | | | | | | | | | | | | | | | | | (ii) | Draw the structure of the third member of the alkane homologous series name it. | and
(2 marks) | | | | | , 11°3 ₁ | | | | | | | | | | | | b) | When | the alkane, hexane, is heated to high temperature, one of the products is | ethene. | | | (i) | Write the equation for the reaction. | (1 mark) | | | | | | | | | | | | | (ii) | Name the process described in (b). | (1 mark) | | | | | | | | | | | (c) Study the flow chart in Figure 1 and answer the questions that follow. Figure 1 | | (i) | Identify A. | (1 mark) | |-----|---------|--|----------| | | (ii) | State one physical property of B. | (1 mark) | | | | | •••••• | | | (iii) | Draw the structure of D . | (1 mark) | | | | | 7.7 | | | | | | | | (iv) | Give a reason why D pollutes the environment. | (1 mark) | | | | | | | | (v) | Write an equation for the formation of F. | (1 mark) | | | | | | | | | | | | (d) | Descr | ribe an experiment which can be used to distinguish butene from butano | | | | | | •••••• | | | ******* | | | | | | | | | | | | | | | | | | | 2. | (a) | Zinc o | occurs mainly as zinc blende. Name one other ore from which zinc can be sted. | (1 mark) | |---|-----|-----------------|---|-----------| | | (b) | The fl
Study | ow chart in Figure 2 shows the various stages in the extraction of zinc me it and answer the questions that follow. | tal. | | S C C C C C C C C C C C C C C C C C C C | Ro | asting amber | ZnO Blast Furnace Condenser Pure Zinc Pure Zinc | | | | | (i) | Figure 2 Write an equation for the reaction which occurs in the roasting chamber. | (1 mark) | | | | (ii) | Describe the process that takes place in the blast furnace. | (3 marks) | | | | (11) | | | | 014S | | | | | | | | | | | | | | | | | | |) | (iii) | Explain why molten lead is added to the condenser. | (1 mark) | | | | | | | | | | | | | Kenya Certificate of Secondary Education, 2019 233/2 | | (iv) | State two uses of zinc. (1 mark) | | |-----|-------|---|-----| | | | | | | | | | | | | (v) | Give one reason why the extraction of zinc causes pollution to the environment. (1 mark) | | | | | | | | | | | | | | | | | | (c) | Expla | in the observations made when zinc metal is added to hot sodium hydroxide. (2 marks) | CIR | | | | 1 _{1,14} | | | | | | | | | | | | Turn over 3. Figure 3 is a flow chart that shows the process that occurs in the manufacture of nitric(V) acid. Figure 3 Name substance P, Q, R and S. | | P | | |----|----------------|---| | | | (1 mark) | | | Q | | | | | (1 mark) | | | R | (1 mark) | | | S | (1 | | | | (1 mark) | | b) | To ob
The p | otain substance R, ammonia is heated at 900 °C in the presence of air and a catalyst. or oduct is then cooled in air. | | | (i) | Name the catalyst for the reaction. (1 mark) | | | | | | | (ii) | Write the equations for the two reactions described in (b). (2 marks) | | | | | | | | | (a) | | (iii) | Other than nitric(V) acid, name another product that is formed. | (1 mark) | |-----|-------|---|-----------| | | | | | | (c) | When | ammonia is reacted with nitric(V) acid, it produces a nitrogenous fertili | ser. | | | (i) | Explain why fertilisers play a major role in food production. | (2 marks) | | | | | | | | | | | | | | | | | | (ii) | State two problems associated with the use of nitrogenous fertilisers. | (2 marks) | (a) | Expl | lain the following observations: | ocium | |-----|-------|---|---------------------------------------| | | (i) | The colour of aqueous copper(II) sulphate fades when a piece of magn metal is dropped into the solution. | (2 marks) | | | | | | | | (ii) | A piece of iron bar is coated with a brown substance when left in the orange day. | pen on a (2 marks) | | | | | | | | | | | | (b) | A sar | mple of water is suspected to contain aluminium ions (AI ³⁺). Describe a leriment that can be carried out to show that AI ³⁺ ions are present in the water | aboratory
ter sample.
(3 marks) | | | | | | | | | | ••••• | | | | | ••••• | | | | | | | | | | | 4. In an experiment to determine the number of moles of water of crystallisation of a | hydra
const | rated compound, Na ₂ SO ₄ • X H ₂ O, 5 g of the compound were heated strongly to a stant mass. | | | |----------------|---|-----------|-----| | (i) | Explain how a constant mass was obtained. | (2 marks) | | | | | | | | | | | | | (ii) | During the experiment, the mass of the residue was found to be 2.205 Determine the number of moles of water of crystallisation in the comp $(Na = 23.0; O = 16.0; S = 32.0; H = 1.0)$ | | 702 | | | | | | | | | | | | | | | | (c) | (1 mark) | What is meant by molar heat of neutralisation? | (a) | 5. | |----------|--|-----|----| | | | | | | | | | | (b) In an experiment to determine the molar heat of neutralisation, 50 cm³ of 1M hydrochloric acid was neutralised by adding 10 cm³ portions of dilute sodium hydroxide. During the experiment, the data in **Table 1** was obtained. Table 1 | Volume of Sodium | 0 | 10 | 20 | 30 | 40 | 50 | 60 | | |---------------------------------|------|------|------|------|------|-----------|------|--| | hydroxide (cm³) Temperature of | 25.0 | 27.0 | 29.0 | 31.0 | 31.0 | 30.0 | 29.0 | | | mixture (°C) | 25.0 | 27.0 | 27.0 | | | 0,000,000 | | | (i) Write the equation for the reaction in this experiment. (1 mark) (ii) On the grid provided, plot a graph of temperature (Y-axis) against volume of sodium hydroxide (X-axis) added. (3 marks) | (iii) | (iii) Determine from the graph the: | | | | | |-------|--|----------------------------------|--|--|--| | | volume of sodium hydroxide which completely neutralises 50 cm
hydrochloric acid. | m ³ of 1M
(1 mark) | | | | | | | | | | | | | II. change in temperature, ΔT , when complete neutralisation occurr | ed.
(1 mark) | | | | | | | | | | | | (iv) | Calculate: | | | | | | | I. the heat change, ΔH when complete neutralisation occurred. (Specific heat capacity = 4.2 Jg ⁻¹ K ⁻¹ , density of solution 1.0 gcr | n ⁻³)
(2 marks) | II. molar heat of neutralisation of hydrochloric acid with sodium hy | /droxide.
(1 mark) | | | | | | | | | | | | | | | | | | | (v) | How would the value of molar heat differ if 50 cm ³ of 1M ethanoic acid instead of 1M hydrochloric acid? Give a reason. | d was used
(2 marks) | 6. | (a) | What | is meant by standard electrode potential of an element? | (1 mark) | |------|-----|-------------|--|-----------------| 1 | | he standard electrode potentials given below to answer the question | s that follow. | | | (b) | | | $E(\mathbf{v})$ | | | | Reac
MnO | tions $q_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_{2}O(l)$ | +1.49 | | | | | $(aq) + e^- \rightarrow M^{2+}(aq)$ | +0.77 | | | | | $(q) + 2e^- \rightarrow N(s)$ | +0.34 | | | | , | $q) + 2e^- \rightarrow P(s)$ | -0.23 | | | | | $0 + 2e^{-} \rightarrow 2Q^{-}(g)$ | +2.87 | | | | - | $(g) + 2e^{-} \rightarrow 2R^{-}(g)$ $(g) + 2e^{-} \rightarrow 2R^{-}(g)$ | +1.36 | | | | (i) | State whether acidified MnO ₄ ⁻ can oxidise M ²⁺ . Give a reason. | (2 marks) | | | | (-) | | ····· | (ii) | Select two half-cells which when combined will give the highest | e.m.f. (1 mark) | | | | (11) | | | | | | | | | | | | (iii) | Write the cell representation for the cell formed in b (ii). | (1 mark) | | | | () | | | | | | (iv) | Calculate the E ⁶ value for the cell formed in b (iii). | (2 marks) | | | | | | | | 9192 | 252 | | Kenya Certificate of Secondary Education, 2019 233/2 | | | (c) | through a solution of the metal sulphate for 12 minutes. Determine mass of the metal. (1 Faraday = $96,500 \text{ C mol}^{-1}$) | t of 6A was passed
e the relative atomic
(3 marks) | |-----|--|--| ŧ | | | | | | | | (d) | State two applications of electrolysis. | (1 mark) | | | | | | | | | 5410 Kenya Certificate of Secondary Education, 2019 233/2 Turn over | 7. | (a) | What is meant by rate of reaction. | (1 mark | |-------|-----|---|--------------------| | | | | •••••••• | | | | | | | | | | | | | (b) | In the space provided, sketch the diagram of a set-up that can be used to deterate of reaction between manganese(IV) oxide and hydrogen peroxide. | mine the (3 marks) | | | | | (5 marks) | (c) | A student placed a small amount of liquid bromine at the bottom of a sealed gas shown in Figure 4. | ıs jar of air | | | | Air | | | | | | | | | | Liquid bromine | | | | | Figure 4 | | | | | (i) Describe what will be observed: | | | | | I. after two minutes | (1 mark) | | | | | | | | | II. after 30 minutes | | | | | II. after 30 minutes | | | 10255 | | Kenya Certificate of Second | | | 19252 | | Kenya Certificate of Secondary Education, 2019 233/2 | | | | (ii) | Use the Kinetic theory to explain the observations: (2 | 2 marks) | |-----|------|---|---------------------| | | | I. after 2 minutes | | | | | | | | | | II. after 30 minutes | | | | | | | | (d) | Some | e plants have seeds that contain vegetable oil. | | | | (i) | Describe how the oil can be obtained from the seeds. | 3 marks) | (ii) | Explain how it could be confirmed that the liquid obtained from the seeds | is oil.
(1 mark) | | | | | | | | | | | | | | | | THIS IS THE LAST PRINTED PAGE. Kenya Certificate of Secondary Education, 2019 233/2