

CHEMISTRY PAPER 2 MARKING SCHEME (i) Element A and B 1.(a) Both have 6 electrons to achieve an octet. (ii) Oxide of B forms an alkaline solution that turns red litmus blue. Oxide of D forms acidic solution, that turns blue litmus red. E has a bigger ionic radius than the ionic radius of C. (iii) E forms ions / ionizes by gaining electrons; which C ionizes by lose of electrons. (iv) Formula; $GH_2 \checkmark 1$ (Rej H₂G) (v) Oxide of D is molecular with weaker vander waals forces, while the oxide of B is a giant ionic structure with stronger ionic bonds. $GCO_{3(S)} \longrightarrow GO_{(S)} + CO_{2(g)} \checkmark 1$ (vi) (b) $B + Cl_2 \longrightarrow BCl_2$ 1.5 litres of $Cl_2 \longrightarrow 5.9375$ of BCl_2 24 litres of Cl₂ = $(5.9375 \times \frac{24}{1.5})$ g BCl₂ =95gRFM of $BCl_2 = 95$ RAM of $BCl_2 = 95-71=24$ Or $B + Cl_2 \longrightarrow BCl_2$ Moles of Cl₂ used = $\frac{1.5}{24}$ = 0.0625 moles $0.0625 \text{ moles } \text{Cl}_2 = 5.9375 \text{g BCl}_2$ 1 mole = $\left(\frac{5.9377g}{0.0625}\right)$ $=95g of BCl_{2}$ RAM of B = 95 - 71 = 24. (a) Gas A - Carbon (iv) oxide < 1/2 √1/2 2.Gas B – Ammonia gas √ 1/2 (b) Liquid C – Ammonium Chloride Solution Solid D - Sodium Hydrogen Carbonate √ ½ (c) NH₄HCO_{3 (ag)} + NaCl (ag) <u>NaHCO₃ (s) + NH₄Cl (aq)</u> Ca (OH) $_{2(aq)}$ + 2NH₄Cl $_{(aq)}$ CaCl_{2 (aq)} ++ 2NH_{3 (g)} + 2H₂O (I) Penalize $\frac{1}{2}\sqrt{1}$ if not balance ½√ if there are no states (d) Ammonia Manufacture of fertilizers Manufacture of Nitric acid Refrigerant Softening water CaCl₂ Name √1 Drying agent

Use √1

3. (i) Condenser

(ii) To indicate when a liquid is boiling, a thermometer reads a constant temperature

(iii) A

(iv) Ethanøl

Reason:- It has a lower boiling of 78°C compared to water with a boiling point of 100°C

- or The liquid with the lower boiling point boils first and its vapours are condensed \checkmark and the condenser to be collected as the first distillate
- (v) Fractional distillation
- (vi) To separate components of crude oil
- To isolate O₂ and N₂ from air
 To manufacture spirits
- (vii)- They are im<mark>mis</mark>ci<mark>ble</mark> liquids
- They have different but close boiling points \checkmark

4.a) To remove any magnesium oxide coating from the surface of magnesium// To remove any

oxide film on it

- b) White solid which is magnesium oxide
- c) Increase in mass was due to oxygen which combined with magnesium
- d) $2Mg(s) + O_{2(g)} _ 2MgO(s)$

Penalize ½ for wrong or missing state symbols

e) The filtrate is magnesium hydroxide which is an alkaline

Red litmus paper changed blue, but blue litmus paper remained blue

II. a) $N_2O \sqrt{1}$ (Nitrogen (I) oxide) – Denitrogen Oxide.

b) $K_2O \sqrt{1}$ (Potassium oxide)

c) Al₂O₃ (Aluminium oxide)

(i) Yellow lead (II) oxide turned to red then grey.

- (ii) I. $H_{2(g)} + PbO_{(s)} \rightarrow H_2O_{(l)} + Pb_{(s)}$
- II. $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(I)}$
- (iii) Reducing properties of hydrogen
 - Combustion nature of hydrogen

leacher.co.ke

Welding

6.a) magnesium Oxide

- b) $2Mg_{(s)} + O2_{(g)} _ 2MgO_{(s)}$
- c) i) Sodium sulphate
 - ii) MgCO₃
- d) $MgO_{(s)} + H_2SO_{4(aq)} M_gSO_{4(aq)} + H_2O_{(L)}$
- e) $Mg^{2+}(aq) + CO^{2-}_{3(aq)} M_gCO_{3(s)}$
- f) $M_g CO_{3(g)}$ _____ $M_g O_{(g)} + CO_{2(g)}$
- g) Na⁺ ions and SO₄²⁻ ions
- h) Precipitation/ double decomposition

- 7.
- (i) Z- Anhydrous calcium chloride $\sqrt{1mk}$ Q- Water
- (ii) Reducing agent / effect $\sqrt{1mk}$ Combustible gases / burning of hydrogen in air.
- (iii) The flame should be blown out $\sqrt[1]{2} mk$ first as the supply of hydrogen continues to avoid explosion. $\sqrt[1]{2}$ Heating of CuO should be $\sqrt[1]{2} mk$ stopped to prevent re-oxidation $\sqrt[1]{2} mk$ of hot copper before $\sqrt[1]{2} mk$ the supply of hydrogen is stopped.
- (iv)Hydrogen so produced is at once oxidized to water $\sqrt{1mk}$ (strong oxidizing agent) Likelyhood of producing poisonous gases such as nitrogen (IV) oxide. $\sqrt{1mk}$
- a) Water molecules has lone pairs $\sqrt{1mk}$ of electrons which can be donated \sqrt{mk} and be shared with H⁺ to form H₃O⁺
- **b**) Is less dense than air / lighter than air. $\sqrt{1mk}$

Teacher.co.ke