TERM TWO 2017FORM 3 CHEMISTRY

PP1 MARKING SCHEME

- 1. Deflagrating spoon used for holding solid substances during burning.
- 2. Add excess copper to nitric (IV) acid and filter the mixture. Add excess Na₂CO₃ solution to the filtrate and filter to obtain the residue of copper (ii) carbonate.

3.

a. Lead (ii) sulphate / PBSO_{4(s)}

b.
$$PB^{2+} + SO_4^2$$
 PBSO_{4(s)}

4.

- a. Deliquescence
- b. Defrosting of roads in very cold climates

5.

a. Under the same conditions of temperature and pressure, the rate of diffusion of a gas is inversely proportional to the square root of its density.

b.
$$\frac{\text{TSO}_2}{\text{TCO}_2} = \sqrt{\frac{\text{MSO}_2\text{TSO}_2}{\text{MCO}_2}} = \frac{64}{\text{OR}} = \frac{1.4545}{\text{TCO}_2} \sqrt{\frac{44}{44}} = 1$$

$$SO_2 = 32 + 32 = 64 \qquad \qquad TSO_2 = \frac{1.4545 \times 30}{1}$$

$$CO_2 = 12 + 32 = 44 \qquad \qquad 1$$

= 43. 6363 seconds

6. Oxidizing agent – SO₂ – Sulphur (iv) oxide

Reducing agent – H₂S – Hydrogen sulphate

7.

- a. Metallic bond
- b. Group I has one electron in its outermost occupied energy level.

8.

- a. Minimum energy required to remove completely an electron from the outermost energy level of an atom in gaseous state.
- b. F- It is less electro positive. It requires more energy to lose electrons.
- 9. Mass of $CH_3COO4 = 25 \times 1.05 = 26.25$

Mass per liter =
$$26.25 \times 2 = 52.5$$

Molar mass of CH3COO4 =
$$60$$

Molarity =
$$\frac{52.5}{60}$$
 = 0.875 mole/dm3

Or

Mass of
$$CH_3COO4 = 25 \times 1.05 = 26.25$$

$$Molar mass = 60$$

Therefore: No of moles =
$$\frac{26.25}{60}$$
 = 0.4375

Molarity =
$$(0.4375 \times 1000)$$
 = 0.875 molars $/_{dm}^3$

Most abundant isotope = 100 - 7.892 = 92.108%11.

- a. Used for drying or keeping substances free from moisture
- b. Used for supporting crucible during heating.

12.

- a. Silicon (iv) oxide has a giant atomic structure with strong covalent bond. Between carbon (iv) oxide molecules are weak van der Waals forces which breaks at room temperature.
- b. Used in the extraction of less reactive metals e.g. iron.

13.

- a. Is a group of compounds with similar chemical properties, chemical formulae and exhibit gradual change in physical properties.
- b. Pentane
 - 2- Methylbotane
 - 2,2- dimethlylptopane
- 14. Heat the mixture and collect the sublimate of Fecl3 on a watch glass. Add water to the remaining mixture and stir to dissolve KCL, filter to obtain ZnO as a residue and KCl as a filtrate, evaporate the filtrate to obtain KCL crystals.

15.

- a. Hexane
- b. 2 methyl propane

16.

- a. Charred black mass of carbon. H₂SO_{4(l)} removes elements of water from sugar leaving carbon.
- b. $C_{(s)} + 2H_2SO_{4(1)} = 2SO_{2(g)} + CO_{2(g)} + 2H_2O_{(1)}$

17.

- a. $2PB (NO_3)_{2 (s)}$ <u>heat</u> $2PBO_{(s)} + 4NO_{2(g)} + O_{2(g)}$
- b. No of moles $2NO_2 = \frac{0.58}{24} = 0.0242$ No of moles PB $(NO_3)_2 = 0.02417 \text{ X} \frac{1}{2}$ = 0.01208Mass of PB $(NO_3)_2 = 207 + (14 + 48)_2$ = 331Mass of PB $(NO_3)_2 = 0.01208 \text{ X} 331$

18.

(i) I

(ii) 2- It hydrolysis in water to produce H+(aq)

19.

- a. Existence of an element in more than one form in the same physical state
- b. (I) Graphite
 - (ii) High melting point and high boiling point

20. Mass of carbon =
$$\underline{12} \times 5.94 = 1.62$$

Mass of hydrogen = $2 \times 2.43 = 0.27$

18

Total mass = (1.62 + 0.27) = 1.89

0.0675 moles of CH = 1.89

Therefore 1 mole (RFM) =
$$\frac{1.89}{}$$
 = 28

0.0675

Element	С	Н
Mass in gm	1.62	0.27
R.A.M	12	1
Moles	1.62	0.27
	12 = 0.135	1 = 0.27
Mole ratio	1:2	

$$(CH_2)_n = 28$$
 therefore $MF - C_2H_4$

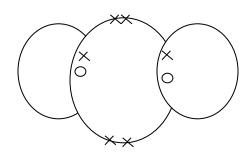
N=2

$$P_2 = \frac{152 \times 6 \times 500}{250 \times 3}$$

 $P_2 = 608 \text{ H}_g$

22.

- a. Bromine its melting point is lower than room temperature while its boiling point is above room temperature.
- b. Because of stronger intermolecular forces of attraction as it increases with increases in size of molecules, iodine molecules are bigger.


23.

a. (i)
$$Pbo_{(g)} + H2_{(g)}$$
 $Pb_{(s)} + H_2O_{(g)}$

$$2H_{2(g)} + O_{2(g)}$$
 $2H_2O_{(g)}$

(ii)Cacl₂ / CaO

24.

25.
$$2NaO4_{(aq)} + H2SO4_{(aq)}$$
 — Na₂SO_{4(aq)} + $2H_2O_{(1)}$ Molarity = $g/liters$ = g/l

Moles of Naso4 = 0.005 = 0.0025

Hence molarity = 0.0025×1000 10

= 0.25 moles / litre

substance is one which absorbs two much water fro0m the 26. A deliquescent Н atmosphere to form a solution.

Efflorescent substances are one which loses its water of crystallization to air without heating.

27.

This is a solution which has a replaceable hydrogen ions

 $Pb^{2+}_{(aq)} + CO_{3}^{2-}_{(aq)} \longrightarrow Pb CO_{3(S)}$

28.

Through repeated compression (200 atoms) and expansion of air which cools it to liquid at -2000c

Argon