Name	adm No:
233/3	Candidate's Signature
CHEMISTRY	Date:
Paper 3	
(Practical)	
TERM TWO	
Time: 2 ¼ Hours	

FORM THREE

INSTRUCTIONS TO CANDIDATES

- Write your name and admission number in the spaces provided.
- Sign and write the date of examination in the spaces provided.
- Answer *all* the questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working must be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

For examiners use only

Question	Maximum Score	Candidate's Score
1		
2		
TOTAL	40	

This paper consists of 5 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

1. You are provided with;

- Solution C which is solution of dibasic acid (COOH)₂ XH₂O containing 10.08g per litre of solution.
- Solution D which is 0.2M solution of sodium hydroxide.

You are required to determine the value of X in the formula (COOH)₂. XH₂O

$$(H=1, C=12, O=16)$$

Procedure

- Fill the burette to the mark with solution C.

- Pipette 25.0cm³ of solution D into a clean conical flask
- Add two drops of phenolphthalein indicator and titrate with solution C.
- Repeat the titration to obtain consistent results and record your results in table 1 below.

 TABLE I 4mks

	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of acid used (cm ³)			

c) Calculate the number of moles of C used given that the reacting ratio of acid to base (2marks)	(2marking ratio of acid to base is 1
c) Calculate the number of moles of C used given that the reacting ratio of acid to base (2marks)	
(2marks)	g ratio of acid to base is 1
(2marks)	ng ratio of acid to base is 1
d) Calculate the concentration of acid solution C in moles per litre. (2	
d) Calculate the concentration of acid solution C in moles per litre. (2	
d) Calculate the concentration of acid solution C in moles per litre. (2	
	re. (2mark
Calculate the relative formula mass of the acid (COOH) ₂ X H ₂ O. (2marks)	

	Hence, determine the value of X in $(COOH)_2$ X H_2O .		(2marks
 You	are required to determine the enthalpy of displacement o	f Cu ²⁺ _(aq) by Zinc.	
Pro	<u>cedure</u>		
i)	Wrap the plastic beaker that has been provided with a	tissue paper.	
)	Place 50cm ³ of 0.2M Copper (II) Sulphate solution in	the beaker. Dip the thern	nometer in t
	solution and note the steady temperature of the solution	n.	
iii)	Carefully transfer all the 1.0g of Zinc powder provide	d into the plastic beaker a	and stir
	carefully with the thermometer.		
iv)	Record the highest temperature that the solution attain		
Rec	ord the results in the Table II below.	Table II.	
Volu	me of Copper (II) Sulphate solution used (cm ³)		
High	est temperature of the mixture (⁰ C)		
Initia	ll temperature of Copper (II) Sulphate Solution (⁰ C)		
Char	nge in temperature (⁰ C)		
		(2	o.u1.co)
	Specific heat connective - 4 2k IV collect	(2m	arks)
,	Specific heat capacity = 4.2kJKg ⁻¹ k ⁻¹ Density of the solution = 1g/cm ³	(2m	arks)
	Density of the solution = $1g/cm^3$		·
a)			·
a) 	Density of the solution = $1g/cm^3$		arks) (2marks
a) 	Density of the solution = $1g/cm^3$	50cm ³ of the solution.	(2marks
a) b)	Density of the solution = $1g/cm^3$ Calculate the number of moles of Cu^{2+} ions that are in Calculate the amount of heat liberated in the reaction.	50cm³ of the solution.	(2marks
	Density of the solution = 1g/cm ³ Calculate the number of moles of Cu ²⁺ ions that are in	50cm³ of the solution.	(2mark
	Density of the solution = $1g/cm^3$ Calculate the number of moles of Cu^{2+} ions that are in Calculate the amount of heat liberated in the reaction.	50cm³ of the solution.	(2marks
b)	Density of the solution = 1g/cm ³ Calculate the number of moles of Cu ²⁺ ions that are in Calculate the amount of heat liberated in the reaction.	50cm³ of the solution.	(2mark

<u>></u>

react	ion.		(2m:
 Vou	have been provided with solid O. Po	form the tests below and iden	tify ions present in the
samp	have been provided with solid Q. Per	form the tests below and iden	my ions present in the
i)	Put all the solid Q in a boiling tube	and then add 8cm³ of distille	d water a little at a time
,	ing. Divide the solution formed into f		
	Observation	Inference	
		(1mark)	(1r
	Observation	Inference	
	Observation	Inference	
		(1mark)	(1r
iii)	To the second portion add ammon		xcess.
	Observation	Inference	
		(1 , , , , ,)	(1
		(1mark)	(1r
	ne third portion add dilute Hydrochlor	ic acid and then warm.	
To th	Observation	Inference	
To th	1		
To th			

» () - ()

Observation	Inference
(1mark)	(1mark)
(" /	()
Add 1cm ³ of nitric (V) acid (HNO ₃) to the mix	ture obtained in (v) above.
Observation	Inference
(1mark)	(1mark)
(Thurk)	(Timux)
Γo the fifth portion add 3 drop Lead (II) nitrate	e
Observation	Inference
(1mark)	(1mark)

vi)

vii)