| Name          | Index number     |
|---------------|------------------|
|               |                  |
| School        | Candidate's sign |
|               |                  |
| 233/2         |                  |
| CHEMISTRY     |                  |
| PAPER 2       |                  |
| DECEMBER 2020 |                  |
| TIME: 2 HOURS |                  |

## SUKELLEMO JOINT MOCK

Kenya Certificate of Secondary Education (K.C.S.E

## **INSTRUCTIONS TO THE CANDIDATES:**

- Write your **name** and **index number** in the spaces provided above
- **Sign** and write the **date** of examination in the spaces provided.
- Answer *all* the questions in the spaces provided.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators can be used.

## For Examiners Use Only

| Question | Maximum score | Candidate's score |
|----------|---------------|-------------------|
| 1        | 12            |                   |
| 2        | 12            |                   |
| 3        | 10            |                   |
| 4        | 10            |                   |
| 5        | 10            |                   |
| 6        | 14            |                   |
| 7        | 12            |                   |
| Total    | 80            |                   |

## Answer all the questions in the spaces provided

1. (a) Study the standard electrode potential for the half-cells given below and answer the questions that follow. (*The letters do not represent the actual symbols of the elements*)

| Half-cells                         |               |                     | E <sup>o</sup> (Volts) |
|------------------------------------|---------------|---------------------|------------------------|
| $N^+_{(aq)} + e^-$                 | $\rightarrow$ | $N_{(s)}$           | -2.92                  |
| $J^+_{(aq)} + e^-$                 | $\rightarrow$ | $J_{(s)}$           | + 0.52                 |
| $K^+_{(aq)} + e^-$                 | $\rightarrow$ | ½ K <sub>2(g)</sub> | 0.00                   |
| $^{1}\backslash_{2}G_{2(g)}+e^{-}$ | $\rightarrow$ | G-(aq)              | +1.36                  |
| $M^{2+}_{(aq)} + 2e^{-}$           | $\rightarrow$ | $M_{(s)}$           | -0.44                  |

| (i)   | Identify the strongest reducing agent. Give a reason for your answer.(2 marks) |                                         |  |  |  |  |
|-------|--------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
|       |                                                                                | • • • • • • • • • • • • • • • • • • • • |  |  |  |  |
|       |                                                                                | • • • • • • • • • • • • • • • • • • • • |  |  |  |  |
| (ii)  | Which two half- cells would produce the highest potential differen             | nce when                                |  |  |  |  |
|       | combined?                                                                      | (1 mark)                                |  |  |  |  |
|       |                                                                                |                                         |  |  |  |  |
|       |                                                                                |                                         |  |  |  |  |
| (iii) | Explain whetether the reaction represented below can take place.               | (2 marks)                               |  |  |  |  |
| ` ′   | $2N^{+}_{(aq)} + M_{(s)} \rightarrow 2N_{(s)} + M^{2+}_{(aq)}$                 | ,                                       |  |  |  |  |
|       |                                                                                |                                         |  |  |  |  |
|       |                                                                                |                                         |  |  |  |  |
|       |                                                                                |                                         |  |  |  |  |
|       |                                                                                |                                         |  |  |  |  |

(b) 100cm<sup>3</sup> of 2M sulphuric (VI) acid was electrolyzed using the set up represented by the diagram below.



| (i) Nam  | ne elec | ctrode.  | A and e  | electrode | е В       |                    |                                         |         | (2 m                                    | arks) | )               |        |                                         |
|----------|---------|----------|----------|-----------|-----------|--------------------|-----------------------------------------|---------|-----------------------------------------|-------|-----------------|--------|-----------------------------------------|
|          |         | <i>A</i> |          |           |           |                    |                                         |         | • • • • • • • • •                       |       |                 |        |                                         |
|          |         | <b>B</b> |          |           |           | •••••              |                                         | •••••   | • • • • • • • • • • • • • • • • • • • • | ••••• | • • • • • • •   | •••••  | • • • • • • • • • • • • • • • • • • • • |
| (ii) Wri | te an   | equation | on for t | he react  | ion that  | produces           | gas L.                                  |         | (1 n                                    | nark) |                 |        |                                         |
|          |         |          |          |           |           |                    |                                         |         |                                         |       |                 |        |                                         |
|          |         |          |          |           |           | •••••              | • • • • • • • •                         | •••••   |                                         |       | • • • • • •     | •••••  | ••••••                                  |
|          |         |          |          | an be id  |           |                    |                                         |         | (1 m                                    |       |                 |        |                                         |
|          |         |          |          |           |           |                    |                                         |         |                                         |       |                 |        |                                         |
| (iv) Ex  | plain   | the dif  | ference  | e in:     |           |                    |                                         |         |                                         |       |                 |        |                                         |
|          |         | I) Th    | ne volu  | me of th  | e gases   | produced           | at the                                  | electro | des.                                    |       |                 | (1 ma  | rk)                                     |
|          |         |          |          |           |           |                    |                                         |         |                                         |       |                 |        |                                         |
|          |         |          |          |           |           |                    |                                         |         |                                         |       |                 |        |                                         |
|          |         |          |          |           |           | $100 \text{ cm}^3$ | of 2M                                   | ethanc  | oic acid                                | was   |                 |        |                                         |
|          |         | •        | ,        | VI) acid. |           | •••••              |                                         |         |                                         |       |                 | (2 mar | ,                                       |
|          |         | ••••     |          |           |           | •••••              | • • • • • • • • • • • • • • • • • • • • |         | •••••                                   |       | • • • • • • • • | •••••  | • • • • • • • • • • • • • • • • • • • • |
|          |         | ••••     |          |           |           |                    |                                         |         |                                         |       |                 |        |                                         |
| 2.       | The g   |          |          |           |           | periodic           |                                         |         |                                         |       |                 |        |                                         |
|          | follov  | v. The   | letters  | are not a | actual sy | mbols of           | the ele                                 | ments.  |                                         |       |                 | -      |                                         |
|          | A       | ]        |          |           |           |                    |                                         |         |                                         |       |                 |        | 7                                       |
|          | В       |          | ]        |           |           |                    |                                         | F       |                                         | Н     | J               | N      |                                         |
|          | С       |          |          |           |           |                    | P                                       | G       |                                         | I     | K               |        | -                                       |
|          | D       |          |          |           |           |                    |                                         |         |                                         |       | L               |        | 1                                       |
|          |         |          |          |           |           |                    |                                         |         |                                         |       |                 |        |                                         |

| a) State the family name of the following elements B, K and N. <b>B</b>                                                  | (3 marks)  |
|--------------------------------------------------------------------------------------------------------------------------|------------|
| K                                                                                                                        |            |
| <i>N</i>                                                                                                                 |            |
| b) Give the formula of the compound formed between P and K.                                                              |            |
| c) Compare and explain the melting points of elements C, P and G.                                                        | (2 marks)  |
|                                                                                                                          |            |
| d) Name the most reactive metallic and non- metallic elements.  Metallic-                                                | (1 mark)   |
| Non-metallic –                                                                                                           | •••••      |
| e) Write the equation for the reaction that takes place between element C a (1 mark)                                     |            |
| f) Compare and explain the first ionization energies of elements C and D.                                                | (2 marks)  |
|                                                                                                                          |            |
| g) Element B combines with chlorine to form a chloride of B. State the movalue of a solution of a chloride of B. Explain |            |
|                                                                                                                          | ( 2 marks) |
|                                                                                                                          |            |

3. Study the scheme below and answer the questions that follow.



| a) | State on (i) | ne source of each of the following  Hydrogen                    | (2 marks)                    |
|----|--------------|-----------------------------------------------------------------|------------------------------|
|    | (ii)         | Nitrogen                                                        |                              |
| b) | in step l    | yo other conditions other than the use of catalyst that would f | avour the reaction (2 marks) |
|    |              |                                                                 |                              |
| c) | Name th      | he catalyst used in each of the steps I and II                  | (2 marks)                    |
|    | Step II      |                                                                 | •••••                        |
| d) |              | he following substances P                                       | (1 mark)                     |
|    | (ii) Gas     | X                                                               | .(1 mark)                    |
|    | (iii)Soli    | d Q                                                             | .(1 mark)                    |
|    | (iv)Gas      | Y                                                               | (1 mark)                     |

| 4. |                | ne following data was obtained during an experiment to determine the ustion of ethanol. | e molar heat of       |  |  |  |  |  |  |  |
|----|----------------|-----------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|--|
|    |                | Volume of water used                                                                    | $=500 \text{cm}^3$    |  |  |  |  |  |  |  |
|    |                | Initial temperature of water                                                            | $=25^{\circ}c$        |  |  |  |  |  |  |  |
|    |                | $= 44.5^{\circ}c$                                                                       |                       |  |  |  |  |  |  |  |
|    |                | Final temperature of water  Mass of ethanol + lamp before burning                       | = 121.5g              |  |  |  |  |  |  |  |
|    |                | Mass of ethanol+ lamp after burning                                                     | = 120.0g              |  |  |  |  |  |  |  |
|    | Calculate the; |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (i)            | The highest temperature change.                                                         | (1 mark)              |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    | <i>(</i> ::)   |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (ii)           | The mass of ethanol used to boil water.                                                 | (1 mark)              |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (iii)          | Number of moles of ethanol used. (molar mass of ethanol=46.0g)                          |                       |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (iv)           | Heat evolved during the experiment (density of water-1g/cm <sup>3</sup> , spec          | ecific heat           |  |  |  |  |  |  |  |
|    |                | capacity of water=4.2Jg <sup>-1</sup> K <sup>-1</sup> ).                                | (2 marks)             |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (v)            | Molar heat of combustion of ethanol (C=12,O=16, H=1)                                    | (2 marks)             |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (vi)           | Write the thermochemical equation for the complete combustion of mark)                  | of ethanol. (1        |  |  |  |  |  |  |  |
|    |                |                                                                                         |                       |  |  |  |  |  |  |  |
|    | <i>(</i> )     |                                                                                         |                       |  |  |  |  |  |  |  |
|    | (vii)          | In the spaces provided, sketch a simple energy level diagram for the change.            | ne above<br>(2 marks) |  |  |  |  |  |  |  |

5. The table below contains information from the measurements made of the radioactivity in counts per minute from radioisotope iodine-128.

| Counts per minute | 240 | 186 | 170 | 156 | 143 | 122 | 108 |
|-------------------|-----|-----|-----|-----|-----|-----|-----|
| Time (minutes)    | 0   | 15  | 20  | 25  | 30  | 40  | 50  |

(i) Plot a graph of counts per minutes against time. (3 marks)



| (11)  | Use the graph to determine the nair-life of fodine 128. | (1 mark)  |
|-------|---------------------------------------------------------|-----------|
|       |                                                         | •••••     |
|       |                                                         |           |
| (iii) | What is the count rate after:                           | (2 marks) |
|       | (a) 12 minutes?                                         |           |
|       | (b) 22 minutes?                                         |           |

| (1V) | After how many minutes was the count rate:                    | (2 marks) |   |
|------|---------------------------------------------------------------|-----------|---|
|      | (a) 160 counts per minute?                                    |           |   |
|      |                                                               |           |   |
|      |                                                               |           |   |
|      | (b) 197 counts per minute?                                    |           |   |
|      |                                                               |           | • |
|      |                                                               |           |   |
| (v)  | State <b>two</b> uses of radioactive isotopes in agriculture. | (2marks)  |   |
|      |                                                               |           |   |
|      |                                                               |           |   |

6. The scheme below shows some reactions starting with ethane. Study it and answer the following questions.



(i) Give the name and draw the structural formula of compound P. (2 marks)

| (ii)  | Name the type of reaction and the reagents for the reactions in the following |                                         |           |  |  |  |
|-------|-------------------------------------------------------------------------------|-----------------------------------------|-----------|--|--|--|
|       | steps.<br>Step I                                                              | Туре                                    | (2 marks) |  |  |  |
|       |                                                                               | Reagents                                |           |  |  |  |
|       | Step II                                                                       | Туре                                    | (2 marks) |  |  |  |
|       | •••••                                                                         | Reagents                                |           |  |  |  |
|       | Step III                                                                      | Туре                                    | (2 marks) |  |  |  |
|       |                                                                               | Reagents                                |           |  |  |  |
| (iii) | Name the 1                                                                    |                                         |           |  |  |  |
|       |                                                                               |                                         | (1 mark)  |  |  |  |
| (iv)  | Give the na<br>Structure                                                      | ame and the structure of compound T     | (2 marks) |  |  |  |
|       |                                                                               |                                         |           |  |  |  |
|       | Name                                                                          |                                         |           |  |  |  |
| (v) D | raw the struc                                                                 | ctural formula of ${f M}$ and give name | (1 mark)  |  |  |  |
|       | Structure                                                                     |                                         |           |  |  |  |
|       |                                                                               |                                         |           |  |  |  |
|       | Name                                                                          |                                         |           |  |  |  |

| (vi)       | (I) Name compound K                                                                              | (1 mark)            |
|------------|--------------------------------------------------------------------------------------------------|---------------------|
|            | (II) If the relative molecular mass of K is 84,000 determine the value of n ( $C=H=1$ ) (1 mark) |                     |
|            |                                                                                                  |                     |
| 7. a) Na   | ame the allotropes of carbon.                                                                    | (1 mark)            |
|            |                                                                                                  |                     |
| b) Ca      | rbon (IV) oxide was passed over heated charcoal powder as s                                      | shown in the set up |
|            | Carboa Ty oxide  Charcoal Combustion tube  Ga  Fleat Solution N                                  | s M<br>Water        |
| <b>(</b> i | i) Name gas M                                                                                    | (1 mark)            |
| (i         | i) Write an equation for the formation of gas M                                                  | (1 mark)            |
| c) I       | dentify <b>solution N</b> and state its purpose in the set up.                                   | (2 marks)           |
|            |                                                                                                  |                     |

| d)      | Carbon (IV) oxide does not support combustion yet burning magnesium                | continues to                            |  |
|---------|------------------------------------------------------------------------------------|-----------------------------------------|--|
| buı     | rn in it.                                                                          |                                         |  |
| i) I    | Explain this observation                                                           | (1 mark)                                |  |
| • • • • |                                                                                    |                                         |  |
| • • • • |                                                                                    |                                         |  |
|         |                                                                                    |                                         |  |
|         | Write a chemical equation for the reaction that occurs.                            | (1 mark)                                |  |
|         |                                                                                    |                                         |  |
| e)      | Using dots (•) and cross (x) to represent outermost electrons, show the            |                                         |  |
|         | carbon (IV) oxide molecule.                                                        | (2 marks)                               |  |
|         |                                                                                    |                                         |  |
| f)      | Carbon (IV) oxide is used in the industrial manufacture of sodium carbonate.       |                                         |  |
|         | (i) Name the other reagent in the Solvay process.                                  | (1 mark)                                |  |
|         |                                                                                    |                                         |  |
|         |                                                                                    | • • • • • • • • • • • • • • • • • • • • |  |
|         | (ii) Name the by product in this process and state any two of its uses. ( 2 marks) |                                         |  |
|         |                                                                                    |                                         |  |
|         |                                                                                    |                                         |  |
|         |                                                                                    |                                         |  |
|         |                                                                                    |                                         |  |