NAME	INDEX NO
233/3	CANDIDATE'S SIGN
CHEMISTRY	
PAPER 3	DATE

INSTRUCTIONS TO CANDIDATES:

(PRACTICAL) TIME: 2¹/₄ HOURS

- Answer **ALL** questions in the spaces provided for each question.
- You are **NOT** allowed to start working with the apparatus for the first 15 minutes of 2¹/₄ hours. This time enables you to read the questions and ensure you have all the chemicals and apparatus that you may need.
- All working must be clearly shown where necessary.
- Mathematical tables and silent electronic calculators may be used.
- This paper consists of **6** printed pages. Ensure that the question paper has all the pages and no questions are missing.

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	19	
2	12	
3	09	
TOTAL SCORE	40	

FOR EXAMINER'S USE ONLY:

Turnover

- 1. You are provided with
 - Solution A, a saturated solution of sodium ethanedioate, $Na_2C_2O_4$ (sodium oxalate).
 - Solution B, aqueous potassium manganate (VII).
 - Solution C, 0.1M ammonium iron (II) sulphate.
 - 1M sulphuric (VI) acid.

You are required to:

- (a) Standardize solution **B** using solution **C**.
- (b) Determine the **solubility of A** at room temperature.

Procedure I

Fill the burette with solution B.

Pipette 25cm³ of **solution C** into a conical flask and add 5cm³ of 1M sulphuric (VI) acid using a measuring cylinder.

Titrate solution C using solution B until a permanent pale pink colour just appears. Repeat the procedure and complete table A below.

Table A	Ι	II	III	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of B used (cm ³)				(4mks)

(a) Calculate the average volume of solution B used.

(1mk)

(b) The reaction between manganate (VI) and iron (II) ions is shown by the ionic equation.

$$MnO_{4(aq)} + 5Fe_{(aq)}^{2+} + 8H_{(aq)}^{+} \rightarrow Mn_{(aq)}^{2+} + 5Fe_{(aq)}^{3+} + 3H_2O_{(1)}$$

(i) Calculate the number of moles of C used. (1mk)

(ii) Calculate the number of moles of B used.

(1mk)

Calculate the number of moles of B per litre.

(1mk)

Procedure II

Measure the temperature of **solution A** and record it in the space provided below. Using a measuring cylinder, measure **2cm³ of solution A** into a conical flask and **dilute** it by adding 75cm³ of distilled water. **Label this solution D**.

Fill the burette with **solution B**. Using pipette filler pipette 25cm³ of solution D into a conical flask and add 5cm³ of **1M sulphuric acid** using a measuring cylinder.

Heat the solution to about 60°C and titrate while still hot with B until a **permanent pink colour just** appears. Record your results in the **table B** below. **Repeat** this procedure to complete the table.

Temperature of solution A _____ °C.

Table B	Ι	II	III	
Final burette reading (cm ³)				
Initial burette reading (cm ³)				
Volume of B used (cm ³)				(4mks)

(c) (i) Calculate the average volume of B used.

(1mk)

The reaction between manganate (VII) ions and ethanedioate ions is given by the ionic equation below.

$$2MnO_{4(aq)} + 5C_2O_{4(aq)}^{2-} + 16H_{(aq)}^{+} \rightarrow 2Mn_{(aq)}^{2+} + 10CO_{2(g)} + 8H_2O_{(1)}$$

(ii) Calculate the number of moles of manganate (VII) ions in average volume of B used. (1mk)

Calculate the number of moles of ethandioate ions in 25cm³ of solution D. (1mk)

(iv) Calculate the number of moles of ethandioate ions in 100cm³ of solution D. (1mk)

(v) How many moles of ethandioate ions are in 25cm³ of solution A used? (1mk)

(vi) Given that the molecular formula of sodium ethandioate is $Na_2C_2O_4$, calculate its solubility in grams per 100g of water at room temperature (Na = 23, C = 12, O = 16). (Assume the density of solution is $1g/cm^3$). (2mks)

- 2. You are provided with **solid G**. Carry out the tests below. Write your observations and inferences in the spaces provided.
 - (a) Place about **half** of solid G in a clean dry test tube and heat it strongly.

Thee about half of some of in a crean ary a	
Observation	Inference
(1mk)	(1mk)
(1111K)	(IIIK)

(b) Place the **remaining** solid G in a boiling tube. Add **10cm³** of distilled water. Shake the mixture for 1 minute. **Filter** the mixture.

Observation	Inference
(1 1)	(1 1)
(1mk)	(1mk)

(i) **Dip** blue and red litmus papers into the filtrate.

Observation	Inference
(1mk)	(1mk)
	(1111K)

(ii) To about 2cm³ of **filtrate**, add 3 drops of **dilute hydrochloric acid**.

Observation	Inference
(1mk)	(1mk)

(iii) To about 2cm³ of **filtrate**, add drops of 2M sulphuric (VI) acid.

Observation	Inference
(1mk)	(1mk)

(iv) To about 1cm³ of filtrate, add 5cm³ of dilute sodium hydroxide (excess).

	of under sourdin hydroxide (excess).
Observation	Inference

	(1mk)	(1mk)
L		

3.

5

- You are provided with **liquid F**. Carry out the tests below and write your observations and Inferences in the spaces provided.
 - (a) Place **one drop** of liquid F on a metallic spatula and **burn** it using a Bunsen burner.

Observation	Inference
(1mk)	(1mk)

(b) Place about 2cm³ of the **remaining** liquid F in a test tube. Add 3cm³ of distilled water and shake the mixture well.

Observation	Inference
(½mk)	(½mk)

(c) (i) To about 2cm³ of the remaining liquid F, add **a small amount** of sodium hydrogen carbonate.

Observation	Inference
(11.)	(1])
(1mk)	(1mk)

(ii) To about 1cm³ of liquid F, add 1cm³ of acidified potassium dichromate (VI).

Observation	Inference
(1mk)	(1mk)

(iii) To about 2cm³ of the mixture, add two drops of **bromine water**.

Inference
(1mk)

