NAME:INDEX NO:.....

SCHOOL:STREAM:

<u>series 13 exams</u>

233/3 CHEMISTRY THEORY PAPER 3 MARKING SCHEME

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Answer ALL the questions in the spaces provided in the question paper.
- You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ¹/₂ hours allowed for this paper. This time it to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- All working MUST be clearly shown where necessary
- Mathematical tables and electronic calculators may be used.

QUESTION	MAX. SCORE	SCORE
1	20	
2	14	
3	6	
TOTAL SCORE	40	

FOR EXAMINER'S USE ONLY

- 1. You are provided with: -
 - 4.5g of solid A in a boiling tube.
 - Solution B, 0.06M acidified Potassium manganate (VII)

You are required to determine

- (1) The solubility of solid A at different temperatures.
- (2) The number of moles of water of crystallization in solid A.

PROCEDURE

- (a) Using a burette, add 4cm3 of distilled water to solid A in the boiling tube. Heat the mixture while stirring with the thermometer to about 70^oC. When the entire solid has dissolved, allow the solution to cool while stirring with the thermometer. Note the temperature at which crystals of solid A firs appear. Record this temperature in table 1.
- (b) Using the burette, add 2cm³ of distilled water to the contents of the boiling tube. Warm the mixture while stirring with the thermometer until all the solid dissolves. Allow the mixture to cool while stirring. Note and record the temperature at which crystals of solid A firs appear.
- (c) Repeat procedure (b) two more times and record the temperatures in table I. Retain the contents of the boiling tube for use in procedure (e)
- (d) (i) Complete table 1 by calculating the solubility of solid A at the different temperatures.
 The solubility of a substance is the mass of the substance that dissolves in 100cm³ (100g) of water at a particular temperature.
 (6 marks)

Volume of water in the boiling	Temperature at which crystals	Solubility of solid A (g/100g
tube (cm ³)	of solid A first appear (⁰ C)	water)
4	70	112.5
6	59	75
8	51	56.25
10	46	45

Table 1

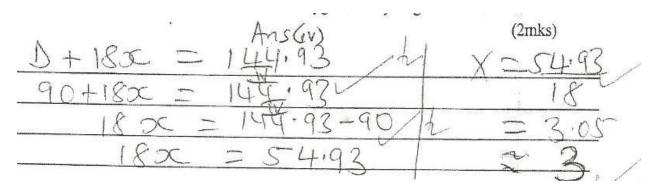
(ii) On the grid provided, plot a graph of the solubility of solid A (vertical axis against temperature). (3 marks)

(iii) Using your graph, determine the temperature at which 100g of solid A would dissolve in 100cm³ of water. (1 mark)

67⁰C <u>+</u> 5

(e) (i) Transfer the contents of the boiling tube into a 250ml volumetric flask. Rinse both the boiling tube and the thermometer with distilled water and add to the volumetric flask. Add more distilled water to make up to the mark. Label this solution A. Fill a burette with solution B. Using a pipette and a pipette filler, place 25.0cm³ of solution A into a conical flaks. Warm the mixture to about 70° C. Titrate the hot solution A with solution B until a permanent pink colour persists. Record your readings in table 2. Repeat the titration two more times and complete table 2. (Retain the remaining solution B for use in question 3). Table 2

	Ι	II	III
Final burette reading			
Initial burette reading			
Volume of solution B used (cm ³)	$d(cm^3)$ 20.8 20.6		20.7
(ii) Calculate the:			(3 marks)
I. Average volume of solution $AV = 20.7$	on B used.		(1 mark)
II. Number of moles of potas $\frac{20.7}{100} \times 0.06 = 0.001242$ $Ans (ii) \underline{I \times 0.06}{100}$	U	e (VII) used.	(1 mark)
III. Number of moles of A	25cm ³ of solu	ution A given that	at 2 moles of potassium
manganate (VII) react cor	mpletely with 5	moles of A.	(1 mark)


MUDIN AS ms (11 0.001242 5×0.001242 0.3105 moles ,

VI. Relative formula mass of A.

(2 marks)

25 cur 0.00310 DECOCUS Ans. 070 MOG C DIOSIDENC A Inde E 00

(iii) The formula of A has the form D. xH₂O. Determine the value of x in the formula given that the relative formula mass of D is 90.0 and atomic masses of oxygen and hydrogen are 16.0 and 1.0 respectively.

- 2. You are provided with 10cm³ P. Solution P contains two cations and one anion. Carry out the tests below and record your observations and inferences in the spaces provided.
 - (a) Add 20cm³ of 2M aqueous sodium hydroxide to all of solution P provided. Shake well filter the mixture into conical flask. Retain both and the residue.
 (b)

(0)	
Observations	Inferences
Blue ppt/residueColoureless filtrate	- Cu2+ present
(1 mark)	(1 mark)

(b) (i) To about 2cm³ of the filtrate, add 2m nitric acid dropwise until in excess (i.e. about 1cm³ of the acid). Retain the mixture.

Dbservations	
 White ppt formed Soluble in excess acid 	
1 mark)	

Divide the mixture in b(i) above into two portions.

(ii) To the first portion, add aqueous sodium hydroxide dropwise until in excess.

Observations	Inferences
White ppt formedSoluble in excess	Pb2+ or Ab _r ³⁺ , Zn2+ present
(1 mark)	(2 marks)

(iii) To the second portion, add aqueous ammonia drowise until in excess.

Observations	Inferences
White ppt formed insoluble in excess	Al3+ or pb2+ present
(1 mark)	(1 mark)

(c) To 2cm³ of the filtrate, add 3 drop of potassium iodide solution.

Observations	Inferences
	Al3+ present pb2+ Absent
No yellow ppt formed	pb2+ Absent
(1 mark)	
	(1 mark)

(d) To 2cm³ of filtrate, add 3 drops of acidified barium nitrate solution.

Observations	Inferences
White ppt formed	SO ₄ ²⁻ present
(1)	nark) (1 mark)

(e) To the residue in (a) add 8cm³ of dilute nitric acid and allow it to filter into a boiling tube.
(i) To 2cm³ of this filtrate, add aqueous ammonia dropwise until in excess.

Observations		Inferences	
blue ppt formed soluble to form a deep blue solutin		Ccl 2+ present /confirmed	
	(1 mark)		(1 mark)

3. Dissolve all of solid G in about 10cm^3 of distilled water in a boiling tube. Use the solution for tests (a) to (c) below.

(a) Place 2cm³ of the solution in a test tube and add 2 drops of acidified potassium manganate (VII), solution B from the burette.

Observations	Inferences
Purple acidified Kmn04 decolorized OR purple solution is decolorized	C = c- or $-c = c$ - or R - OH present
(1 ma	(1 mark)

(a) To 2cm^3 of the solution in another test-tube, add 2-3 drops of bromine water.

Observations				Inferences	
- Orange/yellov decolourized	v bloune	water	not	C = C- or $C = AbsentR - OH$ present	
		(1 r	nark)		(1 mark)

(b) To 2cm³ of the solution in a third test-tube add a spatula full of the sodium hydrogen powder provided.

Observations	Inferences
ettervescene/fizzing/gas bubbles produced	H+/H3O+/ R-C-OH/R-CooH present
(1 mark)	(1 mark)

