NAME	.INDEX NO
CANDIDATE'S SIGNATURE	DATE
SCHOOL	

SERIES 14 EXAMS

233/3 CHEMISTRY PAPER 3 PRACTICALS TIME: 1 ¹/4 HOURS

INSTRUCTIONS TO CANDIDATES.

- a) Write your name and index number in the spaces provided above.
- b) Sign and write the date of examination in the spaces provided above.
- c) Answer<u>ALL</u> questions in the spaces provided above.
- d) All workings <u>MUST</u> be clearly shown where necessary.
- e) You are not allowed to work with the apparatus for the first 15minutes of the 2 ¹/₄ Hours allowed for this paper. This time is to enable you read the question paper and make sure you have all the chemicals and the apparatus that you may need.
- f) Mathematical tables and silent electronic calculators may be used.

FOR EXAMINERS USE ONLI.		
Question	Maximum Score	Candidates' Score
1	12	
2	40	
3	14	
	40	

FOR EXAMINERS' USE ONLY.

This paper consists of 4 printed pages.

Candidates should check the questions paper to ascertain that all pages are printed as indicated and no questions are missing.

1 You are provided with:

Solution M 0.2M hydrochloric acid, Solution F containing 15.3g per litre of basic compound G₂X.H₂O. You are required to determine the relative atomic mass of G.

PRECEDURE:

Place solution M in a burette ,pipette 25cm³ of solution F into a 250cm³ conical flask. Add two drops of methyl orange indicator and titrate. Record your results in the table below. Repeat the procedure two more times and complete table I.

Table I

a) i)

		Ι	II	III
Final burett	e reading			
Initial buret	te reading			
Volume of s	solution M used (cm ³)			
				(4mks)
ii)	What is the average volume of solution M.?			(1mk)
b) Give	en that one mole of F reacts with 2moles of M. Calcul	late the;		
i)	number of moles the basic compound, G_2X , $10H_2G$) in the	volume o	f solution
	F used.			(2mks)
		•••••		•••••
		•••••		
		•••••		
ii)	Concentration of solution F in mole per litre.			(2mks)
		•••••	• • • • • • • • • • • • • • • •	
•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •
•••••				• • • • • • • • • • • • • • •
	Deletive formula mass of the basic compound C	······	······	(1.14 m lss)
111)	Relative formula mass of the basic compound, G ₂	A.10H ₂ 0	Э.	(1 ⁷ 2 IIIKS)
•••••				• • • • • • • • • • • • • • •
•••••		•••••	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •

 iv) relative atomic mass of G (Relative formula Mass of X=60, atomic mass of H=1.0, O=16.0). (1¹/₂ mks)

.....

.....

2 You are provided with:

- 1 1.899g of solid P, solid P is adiabatic acid H_2X .
- 2 0.5M Solution of the dibasic acid , H_2X , Solution V.
- 3 Sodium hydroxide, Solution K.

You are required to determine:

- a) i) the molar heat of solid P.
 - ii) the heat of reaction of one mole of the dibasic acid with sodium hydroxide.
- b) Calculate the heat of reaction of solid H₂X with aqueous sodium hydroxide.

PROCEDURE I.

Place 30cm³ of distilled water into a 100ml beaker. Measure the initial temperature of the water and record it in the table II below. Add all the solid P at once; stir the mixture carefully with the thermometer until all the solid dissolves. Measure the final temperature reached and records it in the table II

<u>Table II</u>

Final t	temperature (^c	⁹ c)		
	Initial temp	erature (°c)		
a)	Determine the	he change in temperature Δ	Γ_1	(1½mks)
b)	Calculate the	e:		
	i)	heat change when H ₂ X c	lissolves in water, (Assuming	the heat capacity
		of the solution is 4.2Jg ^o _k	$^{-1}$ and density is 1g/cm ³)	(2mks)
	ii)	number of moles of the a	acid that were used. (Relative	formula mass of
		H ₂ X is 126)		(1mk)
•••••				
•••••				
	iii)	molar heat of solution Δ	H_1 solution of the acid H_2X .	(1mk)

.....

PROCEDURE II.

Place 30cm³ of solution V into a 100cm³ beaker. Measure the initial temperature and record it in table III below. Measure 30cm³ of sodium hydroxide, solution K.Add all of the 30cm³ of t of solution K at once to V in the beaker. Stir the mixture with the thermometer. Measure the final temperature reached and record it in table III.

<u>Table III.</u>

a)

Final t	empera	ture (° _C)	
Initial	temper	ature (° _C)	
			(1 ½ mks)
b)	Deterr	nine the change in temperature, ΔT_2 .	(½ mk)
c)	Deterr	nine the:	
	i)	heat change for the reaction (Assume the heat capacity of the solut	ion is
		4.2Jg- $1^{-1}k^{+1}$ and density is $1g/cm^3$	(2mks)
	ii)	Number of moles of the acid used (H ₂ X).	(1mk)
	iii)	Heat of reaction , ΔH_2 of one mole of the acid H ₂ X with sodium h	ydroxide
			(1mk)
			· · · · · · · · · · · · · · · · · · ·
(h	Given	that	
u)	Untell	uiai,	

ΔH_1 is the heat for reaction $H_2X_{(s)}$	water	$2H^+_{(aq)} + X^{2-}_{(aq)}$
Δ H ₂ is the heat for the reaction H ⁺ _{(a}	aq)+OH ⁻ (aq)	H ₂ O ₍₁₎

Calculate ΔH_3 for the reaction $H_2X_{(s)} + 2OH^-1_{(aq)} \longrightarrow 2H_2O_{(l)} + X^{2-}_{(aq)}(2mks)$

- 3 You are provided with solid S. Carry out the tests below and record your observations and inferences in the spaces provided.
 - a) Place about one third of solid S in a dry test tube. Heat the solid gently and the strongly. Test any gases produced with blue and red litmus papers.

Observations	Inferences
	(1mk)
(2mks)	

- b) Dissolve the remaining portion of solid S in 8cm³ of distilled water.
 - Divide the solution into the first portions, to the first portion, add aqueous sodium hydroxide drop wise until in excess.

Observations	Inferences
	(2mks)
(1mk)	

ii) To the second portion, add aqueous ammonia dropwise in excess.

Observations	Inferences
	(1mk)
(1mk)	

iii) To the third portion , add 10cm³ of barium chloride solution.

Observations	Inferences
	(1mk)
(1mk)	

iv) To the forth portion, add about 1cm³ of Lead (II) nitrate solution.

Observations	Inferences
	(1mk)
(1mk)	

v) To the fifth portion, add about 2ml of hydrogen peroxide then about 1cm³ of sodium hydroxide solution.

Observations	Inferences
	(1mk)
(1mk)	