Name	
233/3	Candidate's Signature
CHEMISTRY	Date:
PAPER 3	
PRACTICAL	

Kenya Certificate of Secondary Education (K.C.S.E.)

233/3 Chemistry Paper 3 2 ¼ hours

INSTRUCTIONS TO CANDIDATES

- Write your **name** and **index number** in the spaces provided.
- **Sign** and write the **date** of examination in the spaces provided.
- Answer *all* the questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you need.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

For examiners use only

Question	Maximum Score	Candidate's Score
1	12	
2	7	
3	21	
TOTAL	40	

This paper consists of 4printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

TIME: 2 1/4 HOURS

- 1. You are provided with:
 - 3.0g of dibasic acid H₂X, solid **W**
 - Aqueous Sodium hydroxide solution **K**
 - Aqueous hydrochloric acid containing 7.3g per litre, solution M

You are required to:

Determine the concentration of sodium hydroxide, solution ${\bf K}$ in moles per litre. Work out the concentration of solution ${\bf W}$

Procedure I

Fill the burette with solution **M**. pipette 25cm³ of solution **K** and pour into a conical flask. Add 2 drops of phenolphthalein indicator and titrate against solution M from burette. Repeat two more times and complete table 1

Table 1

	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution used (cm ³)			

(5mks)

- (a)(i) Work out the average volume of solution M
 - (ii) Calculate the concentration of solution **M** in mole per litre

(2mks)

(iii) Calculate the number of moles of solution **K** present in one litre of its solution (2mks)

Procedure II

Using a 100ml measuring cylinder, measure 40cm^3 of distilled water and add the whole of solid **W** to the water in a measuring cylinder. Shake to dissolve solid **W** and add more distilled water to make a total volume of 50cm^3 of the solution. Transfer the solution into an empty beaker. Measure accurately 25.0cm^3 of the solution using a 100ml measuring cylinder and then add distilled water to make 100ml of the solution and label it solution **W**. pipette 25.0cm^3 of solution **K** into a conical flask and add two drops of Methyl orange indicator. Titrate against solution W from burette. Repeat two more times and record your results in table II below

Table II

	I	II	III
Final burette reading (cm ³)			
Initial burette reading (cm ³)			
Volume of solution used (cm ³)			

(5mks)

(a) What is the average volume of solution W used?

.....

(b) Calculate the:

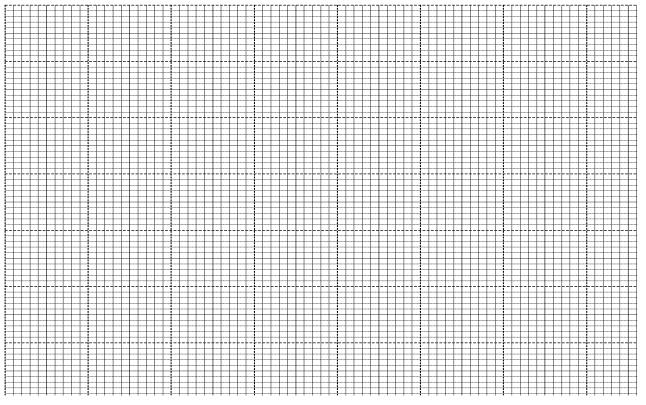
(i) Mole of solution W that reacted with solution K(reaction ratio=2:1,2 mole of K react with

(ii) Mole of solution W in 100cm ³ of solution	(2mks)
(iii) Moles per litre of the original solution made when solid ${\bf W}$ was dissolved	(2mks)

(2mks)

2. You are provided with solid **D** weighed exactly of 4.0g You are required to determine the solubility of solid **D** at difference temperatures

Procedure


1 mole of **W**)

- (i) Fill a clean burette of distilled water to a boiling tube containing all the solid provide
- (ii) Transfer 4cm³ of distilled water to a boiling tube containing all the solid **D** provided
- (iii) Heat the mixture while stirring with the thermometer to a temperature of about 80°C when the entire solid will have dissolved
- (iv) Allow the solution to cool while stirring with thermometer. Note the temperature at which crystals start to appear and record the temperature in the table below.
- (v) To the same solution, add 2cm³ of distilled water from the burette, heat the mixture while stirring with the thermometer to a temperature of about 80°C when the entire solid will have dissolved.
- (vi) Allow the mixture to cool and record the temperature at which crystals first appear in the table below
- (vii) Repeat procedure (v) and (vi) three more times and record the temperature in the table (viii) Complete the table of solubility of solid **D** at different temperatures

Volume of water in boiling	Temperature at which	Solubility of solid D in g/100g
tube (cm3)	crystals first appear (oC)	of water
4		
T		
6		
O		
8		
0		
10		
10		
12		

(a) On the grid provided plot a graph of solubility of solid **D** against temperature (3mks)

- (b) Hence determine the mass of solid deposited when solution is cooled from 55°C to 50°C (1mk)
- (c) Use your graph to determine the temperature at which 80g of solid **D** would dissolve in 100g of water. (1mk)
- 3. (a) You are provided with solid **N**. Carry out the tests below. Write your observations and inferences in the spaces provided
 - (i) Heat about one third of solid N in a clean dry test-tube. Test the gases produced with both blue and red litmus papers.

Observations	Inferences
	(1mk)
(1mk)	(IIIIX)

(ii) Using a boiling tube, dissolve the rest of solid N in about 10cm3 of distilled water and use

the solution for the tests below.

(I) To about 2cm³ of the solution, add 5cm3 of solution P (Aqueous sodium carbonate)

Observations	Inferences
(1mk)	(1mk)

(II) To 2cm³ of the solution, add about 4cm³ of aqueous ammonia drop wise until in excess

Observations	Inferences
(1mk)	(1mk)

(III) To 2cm³ of the solution, add about 4cm³ of aqueous barium nitrate

Observations	Inferences
(1mk)	(1mk)

(IV) To the mixture obtained in III above, add about 2cm3 of dilute hydrochloric acid

Observations	Inferences
(1mk)	(1mk)

