

<u>series 17 exams</u>

233/3CHEMISTRY PAPER 3 1. Procedure II Table 1..... 3 marks (a) – Complete table (C.T) \checkmark 1 Mark **Conditions** (i) Complete table with 3 titrations -1 Mark (ii) Incomplete table with 2 titrations $-\frac{1}{2}$ Mark (iii) Incomplete table with 1 titration – zero mark Penalties: - Penalise 1/2 mark each (i) Wrong arithmetic (ii) Inverted table (iii) Burette reading beyond 50cm (unless explained) (iv) Unrealistic titre values i.e. 1cm³ or 100 (b) Use of decimals (tied to 1^{st} and 2^{nd} rows only) Conditions $(\frac{1}{2} \text{ mark})$ (i) Accept 1 or 2 decimal points used consistently, if not penalise fully. (ii) Where 2 decimal points used the 2nd decimal point should be "0" or "5" if not penalise fully. (iii) Accept consistency in use of zero as initial burette reading i.e. 0, 0.0, 0.00 (c) Acuracy (Tied to correct titre value)..... (1 mk) (i) Atleast one of candidate's values is within ± 0.1 of s.v (1mk) (ii) If non of candidates' value is within ± 0.2 of s.v (0 mark) (iii) If one of the candidates value is within ± 0.2 of the s.v (¹/₂ mark) (d) Principles of Averaging 1 mark **Conditions** (i) - 3 consistent values averaged - If 3 titrations done but only are consistent and averaged 1 mark - If 2 titrations done and are consistent and averaged **Penalties** - Wrong arithmetic error is outside ± 0.2 units in d.p. $\frac{1}{2}$ mark - No working shown but answer is given correctly 1/2 mark - Wrong workings with correct answer 0 mark (e) Final accuracy (Tied to correct average titre) (1 mark) Compare candidate's average titre with the s.v i) If the candidates value is in ± 0.1 of the s.v. -(1 mark)ii) If the candidate's value is in ± 0.2 of the s.v. – (½ mark) iii) If the candidate's value is beyond $\pm 0.2 - (0 \text{ mark})$ beyond ± 0.20 mark (ii) number of moles of the acid used $n = \frac{MV}{1000} = \left\{ 0.15x \ \frac{Ans.in \ a \ (i)}{1000} \right\} = Ans _ mole \frac{1}{2} mark$ e.g. 0.15 x $\frac{20.35}{1000} = 0.003053$ mole (b) Equation $2HA_{(aq)} + M_2CO_3.xH_2O \longrightarrow 2MA_{(aq)} + CO_{2(g)} + (x + 1) H_2O_{(1)} \checkmark 1 Mark$ States wrong/missing or letters joined ✓ ¹/₂ Mark (c) (i) No. of moles of metallic carbonate in 25 cm^3 of Md. = (Answer in a (ii) above $x \frac{1}{2}$)

_ mole ✓ ½ Mark = Answer _____ e.g. 0.003053 x $\frac{1}{2}$ = 0.00153 mole (ii) No. of moles of the metallic carbonate in 50.00 cm³ of solution Mc \checkmark 1 Mark 50cm³ of Mc has same No. of moles of carbonate as 250cm³ of Md. but 25cm^3 of Md \longrightarrow Answer in c (i) above. :.250cm3 of Md has Ans. c (i) x $\frac{250cm^3}{25cm^3}$ = Ans. mole ✓ ½ Mark e.g. $\left(0.00153 \ x \ \frac{250}{25}\right) = 0.0153$ mole (iii) Molar mass of the metallic carbonate 50cm³ of Mc \rightarrow Ans. c (ii) 80cm³ of Mc \rightarrow ? : Moles in 80cm³ of Mc = $\left(Ans. c (ii) \times \frac{80}{50}\right)$ moles but 80cm³ of Mc has 7.0g $\Rightarrow \left\{ Ans \ c \ (ii) x \ \frac{80}{50} \right\}$ mole = 7.0g 1 mole - ? So molar mass = $\langle \frac{1 \times 70}{Ans c(ii) \times \frac{80}{50}} \rangle$ = Ans <u>g</u> $g^{1/2}$ mark e.g = $\frac{7.0 \times 1}{(0.0153 \times \frac{80}{50})} = \frac{7.0}{0.02448} = 285.5477g$ (iv) Value of x in M₂CO₃.xH₂O Let molar mass = $(23 \times 12) + 12 + (16 \times 3) + x (2 + 16)$ = 106 + 18xBut molar mass = Ans. c (iii) $\therefore 106 + 18x = Ans. c$ (iii) $\mathbf{x} = \left\{\frac{Ans.C \ (iii) - 106}{18}\right\} \checkmark \frac{1}{2} \text{ mark}$ 1/2 mark = Ans e.g. 106 + 18x = 285.5477285.5477 - 106 $\mathbf{x} =$ 18 $= 9.9749 \approx 10$ (a) Table $\sqrt{3} \frac{1}{2}$ marks 2. 1. Complete table \checkmark 1 Mark Conditions Complete table with 7 readings \checkmark 1 Mark Incomplete table with 5 - 6 readings $\checkmark \frac{1}{2}$ Mark Incomplete table less than 5 readings 0 mark ii. Treat initial value above 40° C and below 10° C as unrealistic and penalize $\frac{1}{2}$ mark tied to t = 0 iii. Penalise $\frac{1}{2}$ mark for each reading greater than 50°C from t = 30 seconds to a maximum of $\frac{1}{2}$ mark. iv. Penalize fully if all readings are constant. 2. Use of decimals $\checkmark 1$ Mark

Accept whole numbers or readings with .0 or .5 used consistently, otherwise penalize fully.
Accuracy ¹/₂ mark

Compare the candidate's initial temperature (at time = 0) with the school value: If within ± 0.2 award 1 mark otherwise penalize fully

4. Trend ✓1 Mark

Award the first $\frac{1}{2}$ mark for a continuous rise in temperature upto a maximum or constant values followed by a drop.

(b) Graph \checkmark 3 Marks

Trend

Volume of R

(i) Labeling (both axis) ✓ ½ Mark

Penalize fully for - inverted axes

- wrong units

Accept if units are omitted

(ii) Scale ¹/₂ mark

Area covered by the plots should be at least $\frac{3}{4}$ of the plotting area: otherwise penalize fully. (iii) Plotting $\checkmark 1$ Mark

- Award $\sqrt{1}$ mark for at least 7 points correctly plotted

- Award $\frac{1}{2}$ mark for 5 – 6 points correctly plotted otherwise award zero.

- Award fully for plots if the axes are inverted but the plotting is correct.

(iv) Shape 1 mark

- Award ½ mark for a straight line showing progressive increase in temperature.

- Award the other $\frac{1}{2}$ mark for an extrapolated straight line showing a drop.
- (c) (i) $\frac{1}{2}$ mark shown on the graph
- (ii) ¹/₂ mark value(d) Heat change 1 ¹/₂ marks

 $M = M_0 \Lambda T$

 $\Delta H = Mc\Delta T$

e.g. $\frac{42.5}{1000}$ x 4.2 x 4.5 = -0.8033Kj

- Penalize ¹/₂ mark for wrong or absence of units

- Penalize $\frac{1}{2}$ mark for the absence of the –ve sign on the answer

(e) Moles of NaOH =
$$\frac{25 \times 0.6}{1000}$$
 = 0.015mol \checkmark ½ Mark

Molar enthalpy $0.015 \rightarrow -8033$ 1 mole \rightarrow ? $= \frac{1}{0.015} \times .8033 = -53.5533 \text{ kJ mol}^{-1} \checkmark \frac{1}{2} \text{ Mark}$

2. (II)

1. (a) Complete table \checkmark 5 Marks

(i) Complete table with 10 readings 2 ¹/₂ marks

- Penalize $\frac{1}{2}$ mark for each space not filled
- Penalize ¹/₂ mark for any time reading less than or greater than 220 seconds.
- If the candidate enters some readings in fractions and others in decimals award accordingly (each value is worth $\frac{1}{2}$ mark)

(ii) Use of decimals ¹/₂ mark

Accept whole numbers or 1dpl - 2dpl used consistently throughout: otherwise penalize fully. (iii) Accuracy $\frac{1}{2}$ mark

Compare the candidate's first reading and the school value. If within ± 2 seconds award $\frac{1}{2}$ mark: otherwise penalize fully.

(iv) Trend 1/2 mark

Award ¹/₂ mark if time increasing throughout: otherwise penalize fully.

(b) The graph

Volume of S (cm³) (i) Scale ½ mark

Area covered to be ³/₄ of the space provided. Scale should accommodate 4 plots, otherwise penalize fully.

(ii) Labeling of axes ¹/₂ mark

- Penalize fully for wrong units of volume
- Penalize fully for inverted axes
- Accept if no units are shown on labelling
- (iii) Plotting ✓ 1 mark

Accept 4 -5 correctly plotted otherwise penalize fully if 3 plots are correctly plotted award ½ mark if less than 2 plots are correctly plotted award 0 mark. Accept rounding off if consistently used.

(c) Time taken 1cm long magnesium ribbon to react with 5cm³ of solution S.

Showing on the graph $-\frac{1}{2}$ mark

Stating correct reading ¹/₂ mark

Conditions

- \checkmark Penalize fully if not shown on the graph.
- \checkmark Award 1 mark if shown on the graph but not stated
- ✓ Accept the answer to at least 1 dpl unless it works out exactly to a whole number. Otherwise penalize fully.
- \checkmark Award zero if not shown on the graph and the stated value is wrong.
- \checkmark If value shown of the graph is stated wrongly penalize fully.
- 3. (a) (i)

Observations	Inferences
 Brown fumes ✓ ¼ mark Colour of moist blue litmus turns red ✓ ¼ mark 	NO ³ present ✓ ¼ mark
 Colour of moist red litmus remains red. Colour of white solid becomes orange (when hot) ✓ ½ mark but yellow when cold ✓ 1 mark 	PbO formed ✓ ¼ mark

(ii)

Ι	Observations	Inferences
	White ppt formed insoluble in excess ✓ ¹ ⁄ ₂ mark	Pb ²⁺ , Al ³⁺ present \checkmark 1 mark Accept Zn ²⁺ absent \checkmark 1 mark
II	Yellow ppt formed ✓ ½ mark	Pb ²⁺ present ✓ ¼ mark

(iii)

Ι	Observations	Inferences
	No effervescence of colourless gas	SO_{4}^{2-} likely present
	✓ ½ mark	or O_{3^2} and $SO_{3^2} \checkmark \frac{1}{2}$ mark
Π	No white ppt formed ✓ ½ mark	Cl^{-} , SO_4^{2-} absent
		Accept NO ₂ likely to be present \checkmark ¹ / ₂ mark

(b)

r			
	(i)	Observations	Inferences
	(1)	 Melts into a colourless liquid ✓ ¼ mark Burns with a sooty / smocky/ luminous / yellow flame ✓ ¼ mark 	$C = C \text{ or } -C \equiv C \text{ - } \checkmark \text{ present 1 mark}$ Accept:- organic cpd in high C:H ratio - Long chain organic cpd - Aromatic cpd - Unsaturated organic cpd - Carbon - carbon double of triple bonds (in words)
			Rej: $C \equiv C$ or $C = C$ - Alkene, alkyne - Long chain hydrocarbon $\checkmark 1$ mark
	(ii)	Partially dissolves $\checkmark \frac{1}{2}$ mark to form colourless solution $\checkmark \frac{1}{2}$ mark	

Ι	Observations	Inferences
	Slow effervescence ✓ 1 mark/ fizzing	- $H^+/H_30^+/-COOH/R - OH \checkmark 1 mark$
	formation of bubbles of colourless gas	- Carboxylic group in words
	Accept: Slow production of colourless gas	- Solution is acidic
	Rej: "hissing" ¹ / ₂ mark	Rej: Solution is an acid ¹ / ₂ mark
II	- Orange colour of H ⁺ /K ₂ Cr ₂ O ₇ persists/is	Absence of $R - OH \frac{1}{2}$ mark
	retained	
	Rej:Colour of $H^+/K_2Cr_2O_7$ retained $\frac{1}{2}$ mark	
III	Red/orange/yellow bromine water	
	decolourised 🗸 1 mark	$C = C$ or $-C \equiv C - \sqrt{1}$ mark
	Rej: Bromine water turns colourless	Accept: Unsaturated organic compound
	/dicoloured	Penalise fully for any contradictory functional
	✓ ¹ ⁄2 mark	group ✓ ½ mark
IV	Method	
	- Place 1cm ³ of solution T in a test tube	
	- Add 1 – 3 drops of universal indicator	
	solution	Solution is weakly acidic
	- Match the colour obtained with the pH	
	chart	
	pH value 4	Rej: Weak acid ✓ ½ mark
	Rej: pH range of $4-5$ \checkmark $\frac{1}{2}$ mark	