

CHEMISTRY PAPER 3 MARKING SCHEME

1. 12 Marks

Table I 5 Marks distributed as follows

- I. Complete table $\checkmark 1$
 - (i) Complete table with 3 titrations done and consistent $\checkmark 1$
 - (ii) Incomplete table with 2 consistent titrations done $\checkmark 1$
 - (iii)Incomplete table with one titration done $\checkmark 0$
 - (iv) Complete table with 3 titrations done but inconsistency

PENALTIES

- i. Wrong arithmetic/subtraction
- ii. Inverted table
- iii. Burette readings beyond 50cm³ unless where explained
- iv. Unrealistic titre values i.e. below 1cm³ or above 50cm³. NB: Penalize ¹/₂ Mark each to a maximum if ¹/₂ Mark.
- (II) Use of decimals $\checkmark 1$ Tied to 1^{st} and 2^{nd} rows.

Conditions

- (i) 1 D.P used consistently $\checkmark 1$
- (ii) 2 D.P used consistently, the 2nd D.P must be O or 5 ✓1 Penalize fully if any of the conditions is NOT met.

(III): Accuracy..... \checkmark 1 Compare any of the candidates's titre values with the school's litre values (Teacher's titre

values)

- (i) If any is within ± 0.1 of Teacher's titre value.
- (ii) If any within ± 0.2 of Teacher's titre value $\checkmark \frac{1}{2}$ (If condition 1 is not met)
- (iii) None within $\pm 0.2 \checkmark 0$
- NB: If there is wrong arithmetic in the table, compare the school value with the correct titre and award accordingly.
- (IV) Principles of averaging $\dots \checkmark 1$ values averaged must be consistent with ± 0.2 cm3 of each other.

Conditions

- i. If three consistent values are averaged.
- ii. If three titrations are done and only two are possible and averaged. $\succ \quad \checkmark 1$
- iii. If only two titrations are done, consistent and averaged.
- iv. Two inconsistent titrations averaged.
- v. Three inconsistent titrations are done and averaged.
- vi. If three consistent titrations are done and only two averaged.

(V): Final answer $\dots \sqrt{1}$ compared to school average titre.

Conditions

i. Candidate's average titre within ± 0.1 cm3 of the school's average titre. $\checkmark 1$

ii. Candidate's average titre within \pm 0.2cm3 of the school's average titre. \checkmark $\frac{1}{2}$

iii. If candidate's average titre is beyond ± 0.2 cm3 of the school average titre $\sqrt{0}$

NB: Accept answer to 2 d.p otherwise penalise fully unless the answer works out to an exact figure. CALCULATIONS

(b) (i) Grams per litre of NaOH = $\frac{1000 \times 2.36g}{500} \sqrt{1/2}$

$$\therefore \text{Molarity of NaOH} = \frac{4.72}{\frac{4.72}{RmmNaOH}} = \frac{\frac{4.72}{40}}{\frac{4.72}{40}} \text{M} \checkmark \frac{1}{2}$$
$$= 0.118 \text{m/moles per litre}$$

Conditions

i. Penalise $\frac{1}{2}$ m for wrong units used.

ii. Ignore if units are omitted.

b (ii) H₂A_(aq) + 2NaOH_(aq) → Na₂A_(aq) + 2H₂O_(l)
Moles of NaOH used =
$$\frac{25 \times 0.118}{1000} \checkmark \frac{1}{2}$$

= 0.00295 $\checkmark \frac{1}{2}$
Acid : Base = 1 : 2
∴ Moles of dibasic (H₂A) used = $\frac{1}{2} \times 0.00295 \checkmark \frac{1}{2}$
H₂A = 0.001475 $\checkmark \frac{1}{2}$
NB: Penalize $\frac{1}{2}$ mark for wrong transfer of answer bi)

NB: Penalize $\frac{1}{2}$ mark for wrong transfer of answer.bi)

(b) (iii) Molarity of solution A =
$$\frac{1000 x Ans b (ii)}{Ans (a)} \sqrt{\frac{1}{2}}$$

= Correct answer $\sqrt{\frac{1}{2}}$
Penalize $\frac{1}{2}$ mk once for wrong transfer of answers in b (ii) and a)

b (iv)Rmm of H₂A =
$$\frac{8.9}{Ans \ b \ (iii)} \checkmark \frac{1}{2}$$

= Correct answer

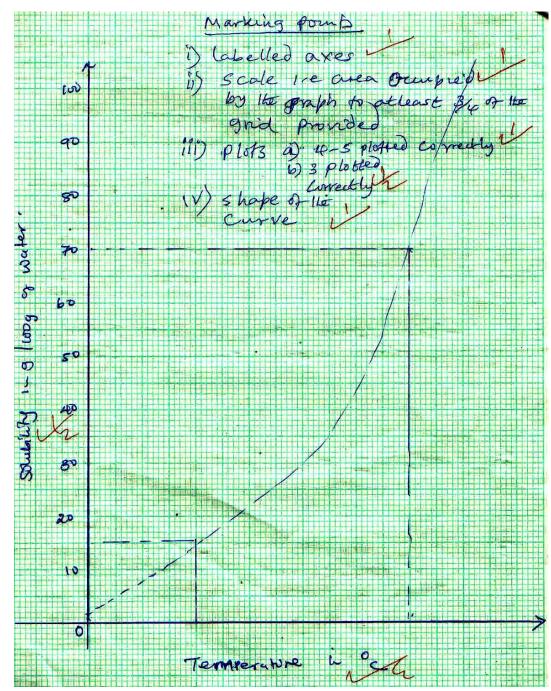
Penalties

i. Penalise ¹/₂ mark for wrong transfer of ans b (iii)

ii. Penalise $\frac{1}{2}$ mark for the answer if outside the range $100 \le \text{Rmm} \le 130$

√1/2

(v) Rmm of H2A = Ans b (iv)


2 + A = Ans. B (iv)
$$\checkmark \frac{1}{2}$$

A = Ans b (iv) - 2
= Correct answer $\checkmark \frac{1}{2}$

2. (i)

Volume of water in the	Temperature at which crystals	Solubility of V in g/100g of water
boiling tube (cm ³)	form (°c)	
4	✓ ¹ / ₂	✓ ¹ / ₂
6	✓ ¹ / ₂	✓1/ ₂
8	✓ ¹ / ₂	✓1/ ₂
10	✓ ¹ / ₂	✓1/ ₂
12	√ ¹ / ₂	$\sqrt{1/2}$

 \rightarrow Each blank space is $\frac{1}{2}$ of a mark. Total marks 5 Marks

(ii) $85^{\circ}C \pm 2^{\circ}C \checkmark 1$

(iii) 12.5g/100g of water $\pm 1g$

Conditions must be indicated in the graph in broken line.

Marking points

- (i) Labelled axes $\checkmark 1$
- (ii) Scale i.e. area occupied by the graph to be atleast ³/₄ of the grid provided.
- (iii) Plots (a) 4 -5 plotted correctly $\checkmark 1$
 - (b) 3 plotted correctly $\sqrt{\frac{1}{2}}$
- (iv) Shape of the curve $\checkmark 1$

3. I (17 MARKS)

	Observations	Inferences
(a)	Yellow/brown filtrate ✓ ½ OR	Fe^{3+} present $\checkmark \frac{1}{2}$ OR
	Black residue	Cu ²⁺ present
(i)	Brown precipitate ✓ ¹ ⁄ ₂	Fe ³⁺ Present ✓ ¹ ⁄ ₂
	Insoluble in excess ✓ ¹ ⁄ ₂	
(ii)	Brown precipitate ✓ ½	Fe^{2+} Present $\checkmark \frac{1}{2}$
	Insoluble in excess ✓ ½	
(iii)	White precipitate formed $\checkmark \frac{1}{2}$	Cl ⁻ , SO ₄ ²⁻ , SO ₃ ²⁻ , CO ₃ ²⁻
		Present
		NB:
		(i) 3 or 4 mentioned $\checkmark 1$
		(ii) 2 mentioned present ✓ ¹ ⁄ ₂
		(iii)1 mentioned present $\checkmark 0$
iv)	No white precipitate formed $\checkmark \frac{1}{2}$	CI - Present ✓ ½
(b)	- Blue solution formed ✓ ½ OR	Cu^{2+} present $\checkmark \frac{1}{2}$ OR
	- No effervescence bubbles	SO_3^2/CO_3^2 absent
(i)	Blue precipitate ✓ ½	Cu ²⁺ present ✓ ¹ / ₂
	insoluble in excess ✓ ½	
(ii)	Blue precipitate ✓ ½ soluble in excess to	Cu^{2+} confirmed present $\checkmark \frac{1}{2}$
	form a deep blue solution $\checkmark \frac{1}{2}$	

(II)

	Observations	Inferences
(a)	- Yellow/sooty flame ✓ ¼₂/ Smoky flame	Either $C = C \checkmark \frac{1}{2}$ OR $-C \equiv C -$ Present
(b) (i)	$K_2Cr_2O_7$ is not decolourised $\checkmark 1$	Either RCOOH \checkmark ¹ / ₂ OR H ₃ 0 ⁺ present
(ii)	Bromine water \checkmark 1 is not discolourised	- RCOOH present ✓ ½
(iii)	$PH = 5 - 6.5 \checkmark \frac{1}{2}$	 Weakly acidic Either H₃0+, H+ ✓ ½ OR RCOOH present
(iv)	Effervescence/bubbling/fizzling ✓ 1	RCOOH confirmed present ✓ ½