

<u>SERIES 2 EXAMS</u>

233/3 CHEMSITRY PAPER 3

MARKING SCHEME

QUESTION 1

PROCEDURE 1

Table 1

Complete table - 3 marks (1 mark for temp. reading, 2 marks for calculating solubility).Decimal (Temperature) - 1 mark (1 or 2 d.p consistently or whole number)Accuracy- 1 mark (Tied to the school value 1st reading only)Trend- 1 mark (Temp. continuously dropping - 1 ark otherwise penalize fully)

- a<u>) Graph</u> labeling axes – ½ mark Scale – ½ mark Plotting – 1 mark Curve – 1 mark
- b) i) Accept correct reading shown from a correctly plotted graph for ½ mark, and correct reading for ½ mark otherwise penalize fully. For correct reading without showing award.

ii) Mark as b(i) above

PROCEDURE 2

 $\begin{array}{ll} \hline Table \ II \\ Complete \ table - 1 \ mark \\ Decimal & -1 \ mark \\ Accuracy & -1 \ mark \\ Principles \ of \ averaging - 1 \ mark \ (average \ volume \ in \ (a)) \\ Final \ Accuracy - \underline{1 \ mark} \\ Total & 5 \ marks \end{array}$

B (i) $\frac{25 \times 0.2\sqrt{(\frac{1}{2})}}{1000} = 0.005 \text{ moles}\sqrt{(\frac{1}{2})}$ ii) Mole ratio A : B 1 : 2 ? 0.005 $\sqrt{(\frac{1}{2})}$ $\frac{1 \times 0.005}{2} = 0.0025 \text{ moles}\sqrt{(\frac{1}{2})}$

iii) 0.0025 moles $\frac{1000 \times 0.0025}{\text{Average volume}} \sqrt{1} = \text{correct answer (1)}$

iv) 6g 250cm³ ? 1000cm³ $\frac{\sqrt{\frac{1}{2}}}{\frac{6 \times 1000}{250}} = 24g\sqrt{\frac{1}{2}}$

> 24g = correct answer in b(iii) above ? 1 mole

 $\frac{24 \text{ x } 1}{1000 \text{ Correct answer}} = \text{R.M.M.}\sqrt{\frac{1}{2}}$

NOTE- Penalty/condition

- 1. Penalize ¹/₂ mark for wrong units
- 2. All answers should be given to at least 4 d.p unless for terminating decimals to less than 4 d.p.
- 3. Penalize ¹/₂ mark for wrong transfer of values, otherwise penalize fully for strange figures.

QUESTION 2

Observation	Inference
a) Solid dissolves to a colourless solution $\sqrt{(1)}$	- colour ions absent $\sqrt{(1)}$
b) Burns with a yellow flame $\sqrt{\frac{1}{2}}$	- Na ⁺ present $\sqrt{\frac{1}{2}}$
c) (i) No yellow ppt formed $\sqrt{\frac{1}{2}}$	- Pb^{2+} absent $\sqrt{\frac{1}{2}}$
(ii) White ppt formed $\sqrt{(1)}$	SO_4^{2-} , SO_3^{2-} or CO_3^{2-} present $\sqrt{(1)}$
(iii) White ppt dissolves $\sqrt{(1)}$	SO_3^{2-} or CO_3^{2-} present $\sqrt{(1)}$
(iv) Acidified K ₂ Cr ₂ O ₇ solution changes	SO ²⁻ present or
colour from orange to green $\sqrt{1}$	CO_3^{2-} absent $\sqrt{(1)}$

NB

1. For part C (ii) award,

1 mark for 3 ions mentioned

 $\frac{1}{2}$ mark for 2 ions mentioned

0 mark for 1 ion mentioned

- 2. Penalize fully for any contradicting ions mentioned in all the inferences
- 3. For part C (iii) award,
 - 1 mark for 2 ions mentioned

 $\frac{1}{2}$ mark for 1 ion mentioned

|--|

Observation	Inference
a) Burns with blue flame or non-sooty flame/non smoky flame/non-luminous flame $\sqrt{(1)}$	$I I I C = C or -C \equiv C - I I I absent \sqrt{(1)}$
b) (i) Acidified KMnO ₄ solution changes colour from purple to colourless. $\sqrt{(1)}$	$R - OH \text{ present} \sqrt{(1)}$ $I I$ $Penalize C = C \& -C \equiv C - I I$
(ii) Orange colour of bromine water persists/remains $\sqrt{(1)}$	$I I I C = C or - C = C - I I$ Absent $\sqrt{(1)}$
(iii) No bubbles/no effervescence $\sqrt{(1)}$	H ⁺ /-COOH/H ₃ O ⁺ absent $\sqrt{(1)}$

NB

- 1. Penalize fully for any contradictory ion.
- 2. for b(iii) award,
 - 1 mark for 3 ions mentioned
 - $\frac{1}{2}$ mark for 2 ions mentioned
 - 0 mark for 1 ion mentioned

