

SERIES 2 EXAMS

233/3 CHEMSITRY PAPER 3

MARKING SCHEME

QUESTION 1

PROCEDURE 1

Table 1

Complete table -3 marks (1 mark for temp. reading, 2 marks for calculating solubility).

Decimal (Temperature) – 1 mark (1 or 2 d.p consistently or whole number) Accuracy – 1 mark (Tied to the school value 1st reading only)

Trend - 1 mark (Temp. continuously dropping – 1 ark otherwise penalize fully)

a) Graph

labeling axes − ½ mark

Scale – ½ mark

Plotting – 1 mark

Curve – 1 mark

- b) i) Accept correct reading shown from a correctly plotted graph for ½ mark, and correct reading for ½ mark otherwise penalize fully. For correct reading without showing award.
- ii) Mark as b(i) above

PROCEDURE 2

Table II

Complete table – 1 mark Decimal - 1 mark Accuracy - 1 mark

Principles of averaging – 1 mark (average volume in (a))

Final Accuracy – <u>1 mark</u> Total 5 marks

B (i)
$$\frac{25 \times 0.2\sqrt{(\frac{1}{2})}}{1000} = 0.005 \text{ moles} \sqrt{(\frac{\frac{1}{2}}{2})}$$

ii) Mole ratio A: B
1: 2
? 0.005

$$\sqrt{(\frac{1}{2})}$$

 $\frac{1 \times 0.005}{2} = 0.0025 \text{ moles} \sqrt{(\frac{1}{2})}$

250

average volume ((a) above) 1000cm³

$$\frac{1000 \times 0.0025}{\text{Average volume}} \sqrt{(1)} = \text{correct answer (1)}$$

iv) 6g 250cm³
? 1000cm³
$$\frac{6 \times 1000}{4 \times 1000} = 24 \text{ g} \sqrt{\frac{1}{2}}$$

$$24 \times 1 \sqrt{(\frac{1}{2})} = \text{R.M.M.} \sqrt{\frac{1}{2}}$$

Correct answer

NOTE- Penalty/condition

- 1. Penalize ½ mark for wrong units
- 2. All answers should be given to at least 4 d.p unless for terminating decimals to less than 4 d.p.
- 3. Penalize ½ mark for wrong transfer of values, otherwise penalize fully for strange figures.

QUESTION 2

Observation	Inference
a) Solid dissolves to a colourless solution $\sqrt{(1)}$	- colour ions absent√(1)
b) Burns with a yellow flame√½	- Na ⁺ present √ ½
c) (i) No yellow ppt formed $\sqrt{\frac{1}{2}}$	- Pb^{2+} absent $\sqrt{\frac{1}{2}}$
(ii) White ppt formed $\sqrt{(1)}$	SO_4^{2-} , SO_3^{2-} or CO_3^{2-} present $\sqrt{(1)}$
(iii) White ppt dissolves $\sqrt{(1)}$	SO_3^{2-} or CO_3^{2-} present $\sqrt{(1)}$
(iv) Acidified K ₂ Cr ₂ O ₇ solution changes	SO ²⁻ present or
colour from orange to green√1	CO_3^{2-} absent $\sqrt{(1)}$

NB

1. For part C (ii) award,

1 mark for 3 ions mentioned

½ mark for 2 ions mentioned 0 mark for 1 ion mentioned

- 2. Penalize fully for any contradicting ions mentioned in all the inferences
- 3. For part C (iii) award, 1 mark for 2 ions mentioned ½ mark for 1 ion mentioned

QUESTION 3

Observation	Inference
a) Burns with blue flame or non-sooty flame/non smoky flame/non-luminous flame $\sqrt{(1)}$	$ \begin{array}{cccc} I & I \\ C = C & \text{or} & -C \equiv C - \\ I & I \\ absent \sqrt{(1)} \end{array} $
b) (i) Acidified KMnO ₄ solution changes colour from purple to colourless.√(1)	R – OH present $\sqrt{(1)}$ I I penalize $C = C & -C \equiv C$ I I
(ii) Orange colour of bromine water persists/remains√(1)	$ \begin{array}{cccc} I & I \\ C &= C & \text{or} & -C &= C - \\ I & I \end{array} $ Absent $\sqrt{(1)}$
(iii) No bubbles/no effervescence√(1)	$H^+/-COOH/H_3O^+$ absent $\sqrt{(1)}$

NB

- 1. Penalize fully for any contradictory ion.
- 2. for b(iii) award,
 - 1 mark for 3 ions mentioned
 - ½ mark for 2 ions mentioned
 - 0 mark for 1 ion mentioned

