Name	Adm. no
School:	Class
Candidate's Sign	Date:

233/3 CHEMISTRY PAPER 3 (PRACTICAL) TIME: 2 ¹/₄ HOURS

Kenya Certificate of Secondary Education (K.C.S.E)

Chemistry Paper 3 Practical

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above
- **Sign** and **write** the date of examination in the spaces provided.
- Answer **all** questions in the spaces provided in the question paper.
- You are not allowed to start working with the apparatus for the first **15 minutes** of the 2 ¹/₄ hours allowed for this paper. This time is to enable you to **read** the questions paper and **make sure** you have all the chemicals and apparatus that you may need.
- All working **must** be clearly shown where necessary.
- Mathematical tables and electronic calculators may be used.

Question	Maximum Score	Candidate's Score
1.	20	
2.	8	
3.	12	
TOTAL	40	

FOR EXAMINER'S USE ONLY:

This paper consists of 5 printed pages. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

1. You are provided with:

Metal carbonate, MCO₃, solid **Q** 2M hydrochloric acid, solution **P** Sodium hydroxide, solution **R** containing 40g per litre of solution. You are required to determine the relative atomic mass of metal **M**

PROCEDURE

Measure accurately 100cm^3 of solution **P** into a clean 250cm^3 conical flask and add all the 4.69g of solid Q, (MCO₃). Shake well and wait for effervescence to stop. Label the resulting solution as S1. Pipette 25cm^3 of solution **R** into a conical flask and add 2-3 dropped of phenolphthalein indicator. Fill a burette with solution S1 and titrate against the solution **R** until the end point. Record your results in the table below. Repeat the procedure to fill the table Table 1

		Ι	II	III
	Final burette reading (cm ³)			
	Initial burette reading (cm ³)			
	Volume of solution S1 used (cm ³)			
Calculate				
(i) Average	e volume of S1 used			(1mk)
(ii) Moles of	of sodium hydroxide, solution R used	l		(2mks)
(Na=23, O	=16, H=1)			
(iii) Moles	of Hydrochloric acid, solution S1 in a	average volum	ne used	(2mks)
(iv) Moles	of Hydrochloric acid, solution S1 in	100cm ³ of solu	ition	(2mks)
		•••••		
(v) Moles of	of hydrochloric acid in 100cm ³ of the	original solut	ion P	(2mks)

 (vi) Moles of Hydrochloric acid, solution P, that reacted with solid Q.MCO3
 (2mks)

 (vii) Moles of MCO3 that reacted
 (2mks)

 (viii) The relative formula mass of MCO3
 (2mks)

 (ix) The atomic mass of M
 (1mk)

2. You are provided with solid **X**. Carry out the tests below and record your observations and inferences in the table below.

(a) Place one spatula endful of solid \mathbf{X} in a test-tube and add about 10cm^3 distilled water. Shake well and use for test (i) below.

(i) Test 2cm³ of the solution in the test tube with red litmus paper and blue litmus paper.

Observations		inferences	
	1mk		1mk

(ii) To 2cm³ of the solution in the test tube, add spatula endful of sodium hydrogen carbonate

Observations		inferences	
	1mk		1mk

(iii) To 2cm³ of the solution, add three drops of acidified potassium Manganate VII solution.

Observations	inferences
--------------	------------

1mk	1mk	

(iv) Place about 4cm^3 of ethanol in a test tube and add 2 drops of concentrated sulphuric acid then add a spatula endful of solid **X**. warm the mixture carefully. Shake well and pour the mixture into 20cm^3 of water in beaker.

Observations		inferences	
	1mk		1mk

3. You are provided with solid **N**. Carry out the tests and record the observations and inferences in the spaces provided

(a) Dissolve one spatula endful of solid \mathbf{N} in about 10cm³ of distilled water. Divide the solution into five portions

Observations		inferences	
	1mk		1mk

(b) To the 1st portion add aqueous NaOH solution dropwise until in excess

Observations		inferences	
	1mk		1mk

(c) To the 2nd portion add dilute ammonia solution dropwise until in excess

Observations	inferences

1mk	1mk

(d) To the 3rd portion add three drops of dilute Sulphuric (VI) acid

Observations	inferences
1mk	1mk

(e)To 4th portion add 3 drops of Lead (II) nitrate solution.

Observations		inferences	
1	lmk		1mk

(f) To 5th portion add 3 drops of Lead (II) nitrate solution and warm the mixture gently

Observations	inferences
1mk	1mk

