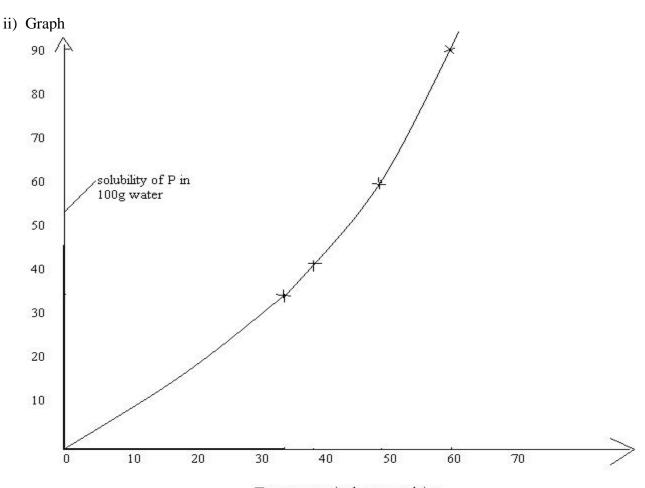


SERIES 3 EXAMS

CHEMISTRY PRACTICAL PAPER 3 MARKING SCHEME


QUESTION 1

1. P is oxalic acid (H₂C₂O₄.2H₂O)

Q1. i) Marking scheme

Volume of distilled water	Crystallization temp. °c	Solubility of P in 100g H ₂ O
4	60	$\frac{3.6}{4} \times 100 = 90$
6	48	$\frac{3.6}{6}$ x 100 = 60
8	38	$\frac{3.6}{8}$ x 100 = 45
10	34 (½mk each)	$\frac{3.6}{3}$ x 100 = 36

School values ± 1

Temperature in degrees celcius

Scale $X - \frac{1}{2} mk$ Y - $\frac{1}{2} mk$

> Labeling $X - \frac{1}{2} mk$ $Y - \frac{1}{2} mk$

Plotting points - all 4 - 1mk3 points - $\frac{1}{2}mk$ Less than 3 - 0

Smooth curve - 1mk

Total (4mks)

iii) Read the value from the student graph

iv)
$$30g - 50g H_2O$$

? - 100g

= 60g (½mk) read temperature from the students graph at which solubility of P is 60g per 100g water. (½mk)

(1mk)

Question 2

Table 1-5 marks

Marks distribution

- complete table ✓1mk

Penalize ½ mk for inverted table

Penalize ½ mk for wrong arithmetic

If only 2 titrations are done give ½ mk and penalize accordingly.

- Decimal points
 - Consistently 1 decimal
 - if 2 dp. Then the 2nd decimal should be 5 or 0

Else award '0' mks

- accuracy ✓ 1mk
 - ± 0.1 of school value $\checkmark 1$ mk

 \pm 0.2 of school value \checkmark ½ mk

Else award '0' mks

(a) Average ✓ 1mk

Value averaged must be shown and consistent i.e within \pm 0.2 from each other Notes

- -3 consistent values averaged ✓1mk
- inconsistency value average 0 mks

Final answer ✓ 1mk

- tied to correct average
- 3 dp

NB: CT - 1, DP - 1, A - 1, AU - 1, final ans 1

$$HCl_{(aq)} + Na_2CO_{3(aq)} \longrightarrow NaCl + CO_{2(g)} + H_2)_{(l)}$$

Balanced equation ✓ 1mk State symbols ✓ 1mk

(b) (i) Molarity of Y

Conc g/l = molarity xRFM

RFM HCl = 36.5

Molarity =
$$\frac{g/l}{RFM} = \frac{7.3}{36.5} = 0.2M \checkmark \frac{1}{2} \checkmark \frac{1}{2}$$

(ii) Molarity of Y₂

Moles of HCl = molarity x vol. in litres

$$\frac{0.2 \times 25}{1000} = 0.005 mol \checkmark \frac{1}{2} \text{ mk}$$

Mole ratio = 2:1

: moles of
$$Na_2CO_3 = \frac{1}{2} \times 0.005 = 0.0025 \text{mol} \checkmark \frac{1}{2}$$

 $25 \text{cm}^3 = 0.0025 \text{mol}$

$$1000 \text{cm}^3 = ? \checkmark \frac{1}{2}$$

$$\frac{1000 \times 0.0025}{25} = 0.1 M \checkmark \frac{1}{2} \text{ mk}$$

Or

$$\frac{1000 \times 0.0025}{answer \quad a} \checkmark$$

3mks

(iii) Relative formula mass of salt Y₂

$$Conc = mol \times RFM$$

$$RFM = \frac{conc \ g \ / \ l}{molarity} \checkmark \frac{1}{2}$$

14.3 dissolved in 500cm³

? =
$$1000$$

 $\frac{1000 \times 14.3}{500}$ \checkmark $\frac{1}{2}$ = 28.6 g/l

(iv) Value of x in Y

$$RFM = \frac{28.6}{0.1} = 286 \checkmark \frac{1}{2}$$

RFM
$$Na_2CO_3 \times H_2O = 286$$

 $106 + 18 \times 100 = 286$

$$18x = 180$$

$$X = 10 \checkmark \frac{1}{2}$$

Question 3

Table III

Solid	Colour of Flame
Sodium Chloride	Yellow ✓
Potassium Chloride	Light T ✓ Light Blue
Calcium Chloride	Orange + Red ✓
Barium Chloride	Pale Green ✓
Solid G	Yellow ✓

½ Mark for each

What is the cation present in solid G? Na⁺✓ ½

b)

Observation	Inferences
i) – Colourless gas ✓	Acidic gas ✓ 1
- Gas with irritating smell✓	
- Gas turns blue litmus red ✓	
- White residue ✓	
(2mks for 4 correct observations)	
ii) – Solid dissolves to form colourless	Soluble solid ✓ 1
solution ✓ 1	
iii) I No white precipitate formed	Ca^{2+} , Mg^{2+} , Pb^{2+} , Al^{3+} , Zn^{2+} Absent $\checkmark 1$
II White precipitate formed ✓ ½	SO ₃ ² -√ CO ² - ₃ √ 1 suspected
Soluble in dilute HCl acid ✓ ½	-
III Purple acidified KMnO ₄ Solution	SO ²⁻ ₃ confirmed ✓ 1
✓	
changes to colourless (decolourised)	